Suppr超能文献

利用嗜热菌AZ1进行银纳米颗粒的绿色细胞外合成及其对几种人类致病细菌的抗菌活性。

Green Extracellular Synthesis of the Silver Nanoparticles Using Thermophilic . AZ1 and its Antimicrobial Activity Against Several Human Pathogenetic Bacteria.

作者信息

Deljou Ali, Goudarzi Samad

机构信息

Department of Biotechnology, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.

出版信息

Iran J Biotechnol. 2016 Jun;14(2):25-32. doi: 10.15171/ijb.1259.

Abstract

BACKGROUND

Silver nanoparticles (AgNPs) are among the most effective antimicrobial agents that are used in the medicine and pharmaceutics. During the past decades, metal nanoparticles synthesis through application of the biological methods has increasingly been used, as the biologically synthesized particles are mostly non-toxic as well as effective.

OBJECTIVES

The main goal for undertaking the present investigation was to evaluate the extracellular synthesis of the AgNPs by a native thermophilic . AZ1 that was isolated from a hot spring in Ardebil province. Subsequently the antimicrobial potentials of the nanoparticle was evaluated against several human pathogenic organisms.

MATERIALS AND METHODS

The biosynthesized AgNPs were confirmed visually by appearance of a dark brown color formation in the mixture as well as silver surface plasmon resonance band by using UV-Visible spectroscopy. The AgNPs were further characterized by SEM, EDX and TEM. The antimicrobial activity of the AgNPs was investigated using , by applying disk diffusion method.

RESULTS

Identification of the strain AZ1 by the 16S rRNA sequence analysis showed 99% sequence homology between this strain and . The obtained UV-Visible spectrum of the aqueous medium containing silver ion, showed a peak at 425 nm which indicates a correspondence to the plasmon absorbance of the silver nanoparticles. The biosynthesized AgNPs were found to be in the size range of ~7-31 nm with spherical the shape. Studies regarding the antibacterial effect of the particles showed the highest inhibitory effect against the two strains; , and , respectively.

CONCLUSIONS

Our study presents a simple green synthesis process for the production of an extracellular nanoparticles which is environmental friendly. Biosynthesis of the AgNPs by a thermophilic bacillus from the hot spring (Qeynarjeh, Ardebil) in Iran with the highest similarity to is reported for the first time.

摘要

背景

银纳米颗粒(AgNPs)是医学和制药领域中最有效的抗菌剂之一。在过去几十年中,通过生物方法合成金属纳米颗粒的应用越来越广泛,因为生物合成的颗粒大多无毒且有效。

目的

进行本研究的主要目的是评估从阿尔达比勒省的温泉中分离出的嗜热菌株AZ1对AgNPs的胞外合成。随后评估了该纳米颗粒对几种人类致病生物的抗菌潜力。

材料和方法

通过混合物中出现深棕色以及使用紫外可见光谱法测定银表面等离子体共振带来直观确认生物合成的AgNPs。通过扫描电子显微镜(SEM)、能量散射X射线光谱(EDX)和透射电子显微镜(TEM)对AgNPs进行进一步表征。使用纸片扩散法研究AgNPs的抗菌活性。

结果

通过16S rRNA序列分析鉴定菌株AZ1,结果显示该菌株与[具体菌株名称未给出]之间的序列同源性为99%。含有银离子的水介质的紫外可见光谱在425nm处出现一个峰值,这表明与银纳米颗粒的等离子体吸收相对应。发现生物合成的AgNPs尺寸范围约为7 - 31nm,呈球形。关于颗粒抗菌效果的研究表明,对两种菌株[具体菌株名称未给出]和[具体菌株名称未给出]分别具有最高的抑制作用。

结论

我们的研究提出了一种简单的绿色合成工艺来生产胞外纳米颗粒,该工艺对环境友好。首次报道了伊朗阿尔达比勒(Qeynarjeh)温泉中的嗜热芽孢杆菌生物合成与[具体菌株名称未给出]相似度最高的AgNPs。

相似文献

3
Antimicrobial and Cytotoxicity Effects of Synthesized Silver Nanoparticles from Punica granatum Peel Extract.
Nanoscale Res Lett. 2018 Oct 4;13(1):315. doi: 10.1186/s11671-018-2731-y.
4
Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria.
Microb Pathog. 2018 Mar;116:221-226. doi: 10.1016/j.micpath.2018.01.038. Epub 2018 Jan 31.
8
Green synthesis of silver nanoparticles by Bacillus methylotrophicus, and their antimicrobial activity.
Artif Cells Nanomed Biotechnol. 2016 Jun;44(4):1127-32. doi: 10.3109/21691401.2015.1011805. Epub 2015 Mar 6.
10
Biosynthesis, characterization and antimicrobial activity of silver nanoparticles by a halotolerant SCU-L.
Prep Biochem Biotechnol. 2018;48(7):582-588. doi: 10.1080/10826068.2018.1476880. Epub 2018 Jun 5.

引用本文的文献

1
Advancing food safety with biogenic silver nanoparticles: Addressing antimicrobial resistance, sustainability, and commercial viability.
Food Chem X. 2025 Feb 20;26:102298. doi: 10.1016/j.fochx.2025.102298. eCollection 2025 Feb.
2
Antibacterial and Photocatalytic Applications of Silver Nanoparticles Synthesized from .
Int J Mol Sci. 2024 Nov 3;25(21):11809. doi: 10.3390/ijms252111809.
3
Green biologically synthesized metal nanoparticles: biological applications, optimizations and future prospects.
Future Sci OA. 2024 May 15;10(1):FSO935. doi: 10.2144/fsoa-2023-0196. eCollection 2024.
4
Microbial nanotechnology for agriculture, food, and environmental sustainability: Current status and future perspective.
Folia Microbiol (Praha). 2024 Jun;69(3):491-520. doi: 10.1007/s12223-024-01147-2. Epub 2024 Feb 29.
5
Effect of Biosynthesized Silver Nanoparticles on the Growth of the Green Microalga and Astaxanthin Synthesis.
Nanomaterials (Basel). 2023 May 11;13(10):1618. doi: 10.3390/nano13101618.
6
Biosynthesis of Silver Nanoparticles Produced Using spp. Bacteria.
Nanomaterials (Basel). 2023 Feb 11;13(4):702. doi: 10.3390/nano13040702.
9
Bioactive potentiality of secondary metabolites from endophytic bacteria against SARS-COV-2: An in-silico approach.
PLoS One. 2022 Aug 4;17(8):e0269962. doi: 10.1371/journal.pone.0269962. eCollection 2022.
10
Evaluation of silver nanoparticles in cosmeceutical and potential biosafety complications.
Saudi J Biol Sci. 2022 Apr;29(4):2085-2094. doi: 10.1016/j.sjbs.2022.01.035. Epub 2022 Jan 21.

本文引用的文献

2
Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum.
Appl Biochem Biotechnol. 2014 Apr;172(8):4084-98. doi: 10.1007/s12010-014-0809-2. Epub 2014 Mar 9.
4
Synthesis of anisotropic silver nanoparticles using novel strain, Bacillus flexus and its biomedical application.
Colloids Surf B Biointerfaces. 2013 Feb 1;102:232-7. doi: 10.1016/j.colsurfb.2012.08.018. Epub 2012 Aug 21.
5
Biosynthesis of silver nanoparticles from Tribulus terrestris and its antimicrobial activity: a novel biological approach.
Colloids Surf B Biointerfaces. 2012 Aug 1;96:69-74. doi: 10.1016/j.colsurfb.2012.03.023. Epub 2012 Apr 6.
6
Silver nanoparticles: the powerful nanoweapon against multidrug-resistant bacteria.
J Appl Microbiol. 2012 May;112(5):841-52. doi: 10.1111/j.1365-2672.2012.05253.x. Epub 2012 Mar 28.
7
Rapid biosynthesis of silver nanoparticles from Bacillus megaterium (NCIM 2326) and their antibacterial activity on multi drug resistant clinical pathogens.
Colloids Surf B Biointerfaces. 2011 Nov 1;88(1):325-31. doi: 10.1016/j.colsurfb.2011.07.009. Epub 2011 Jul 12.
8
Mechanistic aspects in the biogenic synthesis of extracellular metal nanoparticles by peptides, bacteria, fungi, and plants.
Appl Microbiol Biotechnol. 2011 Jun;90(5):1609-24. doi: 10.1007/s00253-011-3249-8. Epub 2011 Apr 12.
10
Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli.
Appl Microbiol Biotechnol. 2010 Jan;85(4):1115-22. doi: 10.1007/s00253-009-2159-5. Epub 2009 Aug 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验