Hodgson John G, Santini Bianca A, Montserrat Marti Gabriel, Royo Pla Ferran, Jones Glynis, Bogaard Amy, Charles Mike, Font Xavier, Ater Mohammed, Taleb Abdelkader, Poschlod Peter, Hmimsa Younes, Palmer Carol, Wilson Peter J, Band Stuart R, Styring Amy, Diffey Charlotte, Green Laura, Nitsch Erika, Stroud Elizabeth, Romo-Díez Angel, de Torres Espuny Lluis, Warham Gemma
Unit of Comparative Plant Ecology, The University, Sheffield S1 4ET, UK.
Department of Archaeology, The University, Sheffield S10 2TN, UK.
Ann Bot. 2017 Nov 10;120(5):633-652. doi: 10.1093/aob/mcx084.
While the 'worldwide leaf economics spectrum' (Wright IJ, Reich PB, Westoby M, et al. 2004. The worldwide leaf economics spectrum. Nature : 821-827) defines mineral nutrient relationships in plants, no unifying functional consensus links size attributes. Here, the focus is upon leaf size, a much-studied plant trait that scales positively with habitat quality and components of plant size. The objective is to show that this wide range of relationships is explicable in terms of a seed-phytomer-leaf (SPL) theoretical model defining leaf size in terms of trade-offs involving the size, growth rate and number of the building blocks (phytomers) of which the young shoot is constructed.
Functional data for 2400+ species and English and Spanish vegetation surveys were used to explore interrelationships between leaf area, leaf width, canopy height, seed mass and leaf dry matter content (LDMC).
Leaf area was a consistent function of canopy height, LDMC and seed mass. Additionally, size traits are partially uncoupled. First, broad laminas help confer competitive exclusion while morphologically large leaves can, through dissection, be functionally small. Secondly, leaf size scales positively with plant size but many of the largest-leaved species are of medium height with basally supported leaves. Thirdly, photosynthetic stems may represent a functionally viable alternative to 'small seeds + large leaves' in disturbed, fertile habitats and 'large seeds + small leaves' in infertile ones.
Although key elements defining the juvenile growth phase remain unmeasured, our results broadly support SPL theory in that phytometer and leaf size are a product of the size of the initial shoot meristem (≅ seed mass) and the duration and quality of juvenile growth. These allometrically constrained traits combine to confer ecological specialization on individual species. Equally, they appear conservatively expressed within major taxa. Thus, 'evolutionary canalization' sensu Stebbins (Stebbins GL. 1974. Flowering plants: evolution above the species level . Cambridge, MA: Belknap Press) is perhaps associated with both seed and leaf development, and major taxa appear routinely specialized with respect to ecologically important size-related traits.
虽然“全球叶片经济谱”(Wright IJ,Reich PB,Westoby M等,2004年。全球叶片经济谱。《自然》:821 - 827)定义了植物中的矿质营养关系,但尚无统一的功能共识将大小属性联系起来。在此,重点关注叶片大小,这是一个经过大量研究的植物性状,与栖息地质量和植物大小的组成部分呈正相关。目的是表明,这种广泛的关系可以用种子 - 叶元 - 叶(SPL)理论模型来解释,该模型根据涉及构成幼嫩枝条的构建模块(叶元)的大小、生长速率和数量的权衡来定义叶片大小。
使用2400多种物种的功能数据以及英文和西班牙文植被调查来探究叶面积、叶宽、冠层高度、种子质量和叶片干物质含量(LDMC)之间的相互关系。
叶面积是冠层高度、LDMC和种子质量的一致函数。此外,大小性状部分解耦。首先,宽阔的叶片有助于实现竞争排斥,而形态上大的叶片通过解剖在功能上可能较小。其次,叶片大小与植物大小呈正相关,但许多叶片最大的物种是中等高度,叶片基部支撑。第三,在受干扰的肥沃栖息地中,光合茎可能是“小种子 + 大叶片”的功能可行替代方案,而在贫瘠栖息地中是“大种子 + 小叶片”的替代方案。
虽然定义幼年期生长阶段的关键要素仍未测量,但我们的结果广泛支持SPL理论,即叶元和叶片大小是初始茎尖分生组织大小(≅种子质量)以及幼年期生长的持续时间和质量的产物。这些异速生长受限的性状共同赋予单个物种生态专一性。同样,它们在主要分类群中似乎保守表达。因此,Stebbins(Stebbins GL. 1974. 开花植物:物种水平以上的进化。马萨诸塞州剑桥:贝尔纳普出版社)意义上的“进化渠化”可能与种子和叶片发育都有关,并且主要分类群在与生态重要的大小相关性状方面似乎通常是专一的。