Suppr超能文献

在语义增强型癌症登记处对疾病病程进行分析和可视化。

Analysis and visualization of disease courses in a semantically-enabled cancer registry.

作者信息

Esteban-Gil Angel, Fernández-Breis Jesualdo Tomás, Boeker Martin

机构信息

Fundación para la Formación e Investigación Sanitarias de la Región de Murcia, Biomedical Informatics & Bioinformatics Platform, IMIB-Arrixaca, C/ Luis Fontes Pagán, n° 9, Murcia, 30003, Spain.

Dpto. Informática y Sistemas, Facultad de Informática, Universidad de Murcia, IMIB-Arrixaca, Facultad de Informática, Campus de Espinardo, Murcia, 30100, Spain.

出版信息

J Biomed Semantics. 2017 Sep 29;8(1):46. doi: 10.1186/s13326-017-0154-9.

Abstract

BACKGROUND

Regional and epidemiological cancer registries are important for cancer research and the quality management of cancer treatment. Many technological solutions are available to collect and analyse data for cancer registries nowadays. However, the lack of a well-defined common semantic model is a problem when user-defined analyses and data linking to external resources are required. The objectives of this study are: (1) design of a semantic model for local cancer registries; (2) development of a semantically-enabled cancer registry based on this model; and (3) semantic exploitation of the cancer registry for analysing and visualising disease courses.

RESULTS

Our proposal is based on our previous results and experience working with semantic technologies. Data stored in a cancer registry database were transformed into RDF employing a process driven by OWL ontologies. The semantic representation of the data was then processed to extract semantic patient profiles, which were exploited by means of SPARQL queries to identify groups of similar patients and to analyse the disease timelines of patients. Based on the requirements analysis, we have produced a draft of an ontology that models the semantics of a local cancer registry in a pragmatic extensible way. We have implemented a Semantic Web platform that allows transforming and storing data from cancer registries in RDF. This platform also permits users to formulate incremental user-defined queries through a graphical user interface. The query results can be displayed in several customisable ways. The complex disease timelines of individual patients can be clearly represented. Different events, e.g. different therapies and disease courses, are presented according to their temporal and causal relations.

CONCLUSION

The presented platform is an example of the parallel development of ontologies and applications that take advantage of semantic web technologies in the medical field. The semantic structure of the representation renders it easy to analyse key figures of the patients and their evolution at different granularity levels.

摘要

背景

地区和流行病学癌症登记处对于癌症研究以及癌症治疗的质量管理十分重要。如今有许多技术解决方案可用于收集和分析癌症登记处的数据。然而,当需要进行用户定义的分析以及将数据链接到外部资源时,缺乏一个定义明确的通用语义模型是个问题。本研究的目标是:(1)为本地癌症登记处设计一个语义模型;(2)基于该模型开发一个具有语义功能的癌症登记处;(3)对癌症登记处进行语义利用,以分析和可视化疾病进程。

结果

我们的提议基于我们之前使用语义技术的成果和经验。存储在癌症登记处数据库中的数据通过由OWL本体驱动的过程转换为RDF。然后对数据的语义表示进行处理,以提取语义患者档案,通过SPARQL查询利用这些档案来识别相似患者群体并分析患者的疾病时间线。基于需求分析,我们已经生成了一个本体草案,该草案以实用且可扩展的方式对本地癌症登记处的语义进行建模。我们已经实现了一个语义网平台,该平台允许将癌症登记处的数据转换并存储为RDF。这个平台还允许用户通过图形用户界面制定增量式用户定义查询。查询结果可以以几种可定制的方式显示。个体患者复杂的疾病时间线可以清晰呈现。不同的事件,例如不同的治疗方法和疾病进程,根据它们的时间和因果关系进行展示。

结论

所展示的平台是本体和应用并行开发的一个例子,它利用了医疗领域的语义网技术。表示的语义结构使其易于在不同粒度级别分析患者的关键数据及其演变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/21cb/5622544/f8ec04a15cf2/13326_2017_154_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验