Suppr超能文献

袋獾有限的遗传多样性和种群结构对保护的影响()。 (括号部分原文缺失内容,无法准确完整翻译)

Conservation implications of limited genetic diversity and population structure in Tasmanian devils ().

作者信息

Hendricks Sarah, Epstein Brendan, Schönfeld Barbara, Wiench Cody, Hamede Rodrigo, Jones Menna, Storfer Andrew, Hohenlohe Paul

机构信息

Institute for Bioinformatics and Evolutionary Studies, Department of Biological Sciences, University of Idaho, 875 Perimeter Dr., Moscow, Idaho 83844-3051, USA.

School of Biological Sciences, Washington State University, Pullman, WA 99164-4236, USA.

出版信息

Conserv Genet. 2017 Aug;18(4):977-982. doi: 10.1007/s10592-017-0939-5. Epub 2017 Feb 7.

Abstract

Tasmanian devils face a combination of threats to persistence, including Devil Facial Tumor Disease (DFTD), an epidemic transmissible cancer. We used RAD sequencing to investigate genome-wide patterns of genetic diversity and geographic population structure. Consistent with previous results, we found very low genetic diversity in the species as a whole, and we detected two broad genetic clusters occupying the northwestern portion of the range, and the central and eastern portions. However, these two groups overlap across a broad geographic area, and differentiation between them is modest ( = 0.1081). Our results refine the geographic extent of the zone of mixed ancestry and substructure within it, potentially informing management of genetic variation that existed in pre-diseased populations of the species. DFTD has spread across both genetic clusters, but recent evidence points to a genomic response to selection imposed by DFTD. Any allelic variation for resistance to DFTD may be able to spread across the devil population under selection by DFTD, and/or be present as standing variation in both genetic regions.

摘要

袋獾面临着一系列影响其生存的威胁,包括袋獾面部肿瘤病(DFTD),一种传染性癌症流行病。我们使用RAD测序来研究全基因组范围内的遗传多样性模式和地理种群结构。与之前的结果一致,我们发现整个物种的遗传多样性非常低,并且我们检测到两个广泛的遗传簇,一个占据该物种分布范围的西北部,另一个占据中部和东部。然而,这两组在广阔的地理区域内重叠,并且它们之间的分化程度适中(Fst = 0.1081)。我们的结果细化了混合血统区域及其内部亚结构的地理范围,这可能为该物种患病前种群中存在的遗传变异管理提供信息。DFTD已经在两个遗传簇中传播,但最近的证据表明存在对DFTD施加的选择的基因组反应。任何对DFTD具有抗性的等位基因变异可能能够在DFTD的选择下在袋獾种群中传播,和/或作为两个遗传区域中的固定变异存在。

相似文献

1
Conservation implications of limited genetic diversity and population structure in Tasmanian devils ().
Conserv Genet. 2017 Aug;18(4):977-982. doi: 10.1007/s10592-017-0939-5. Epub 2017 Feb 7.
2
Conserving adaptive potential: lessons from Tasmanian devils and their transmissible cancer.
Conserv Genet. 2019 Feb;20(1):81-87. doi: 10.1007/s10592-019-01157-5. Epub 2019 Feb 14.
4
Isotopic niche variation in Tasmanian devils with progression of devil facial tumor disease.
Ecol Evol. 2021 Jun 6;11(12):8038-8053. doi: 10.1002/ece3.7636. eCollection 2021 Jun.
5
Density trends and demographic signals uncover the long-term impact of transmissible cancer in Tasmanian devils.
J Appl Ecol. 2018 May;55(3):1368-1379. doi: 10.1111/1365-2664.13088. Epub 2018 Feb 5.
8
Devil Facial Tumor Disease.
Vet Pathol. 2016 Jul;53(4):726-36. doi: 10.1177/0300985815616444. Epub 2015 Dec 13.
9
Coevolution promotes the coexistence of Tasmanian devils and a fatal, transmissible cancer.
Evolution. 2024 Dec 22;79(1):100-118. doi: 10.1093/evolut/qpae143.

引用本文的文献

1
Genetic diversity and population structure of a rare flowering tree endemic to Appalachia, .
Ecol Evol. 2024 Jun 25;14(6):e11547. doi: 10.1002/ece3.11547. eCollection 2024 Jun.
2
Intergenomic signatures of coevolution between Tasmanian devils and an infectious cancer.
Proc Natl Acad Sci U S A. 2024 Mar 19;121(12):e2307780121. doi: 10.1073/pnas.2307780121. Epub 2024 Mar 11.
4
Population genomics of the critically endangered kākāpō.
Cell Genom. 2021 Sep 8;1(1):100002. doi: 10.1016/j.xgen.2021.100002. eCollection 2021 Oct 13.
5
Towards evolutionary predictions: Current promises and challenges.
Evol Appl. 2022 Dec 9;16(1):3-21. doi: 10.1111/eva.13513. eCollection 2023 Jan.
6
Restoring faith in conservation action: Maintaining wild genetic diversity through the Tasmanian devil insurance program.
iScience. 2022 May 26;25(7):104474. doi: 10.1016/j.isci.2022.104474. eCollection 2022 Jul 15.
7
Low-coverage reduced representation sequencing reveals subtle within-island genetic structure in Aldabra giant tortoises.
Ecol Evol. 2022 Mar 18;12(3):e8739. doi: 10.1002/ece3.8739. eCollection 2022 Mar.
8
Genome-Wide Evidence for Complex Hybridization and Demographic History in a Group of From China.
Front Genet. 2021 Aug 30;12:717200. doi: 10.3389/fgene.2021.717200. eCollection 2021.
10
Persistent panmixia despite extreme habitat loss and population decline in the threatened tricolored blackbird ().
Evol Appl. 2020 Oct 31;14(3):674-684. doi: 10.1111/eva.13147. eCollection 2021 Mar.

本文引用的文献

1
AN EXACT TEST FOR POPULATION DIFFERENTIATION.
Evolution. 1995 Dec;49(6):1280-1283. doi: 10.1111/j.1558-5646.1995.tb04456.x.
2
Rapid evolutionary response to a transmissible cancer in Tasmanian devils.
Nat Commun. 2016 Aug 30;7:12684. doi: 10.1038/ncomms12684.
3
Harnessing the power of RADseq for ecological and evolutionary genomics.
Nat Rev Genet. 2016 Feb;17(2):81-92. doi: 10.1038/nrg.2015.28. Epub 2016 Jan 5.
4
A second transmissible cancer in Tasmanian devils.
Proc Natl Acad Sci U S A. 2016 Jan 12;113(2):374-9. doi: 10.1073/pnas.1519691113. Epub 2015 Dec 28.
6
TESS3: fast inference of spatial population structure and genome scans for selection.
Mol Ecol Resour. 2016 Mar;16(2):540-8. doi: 10.1111/1755-0998.12471. Epub 2015 Oct 17.
8
Seven common mistakes in population genetics and how to avoid them.
Mol Ecol. 2015 Jul;24(13):3223-31. doi: 10.1111/mec.13243. Epub 2015 Jun 19.
9
Clumpak: a program for identifying clustering modes and packaging population structure inferences across K.
Mol Ecol Resour. 2015 Sep;15(5):1179-91. doi: 10.1111/1755-0998.12387. Epub 2015 Feb 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验