Suppr超能文献

在极化激元模拟器中实现经典XY哈密顿量。

Realizing the classical XY Hamiltonian in polariton simulators.

作者信息

Berloff Natalia G, Silva Matteo, Kalinin Kirill, Askitopoulos Alexis, Töpfer Julian D, Cilibrizzi Pasquale, Langbein Wolfgang, Lagoudakis Pavlos G

机构信息

Skolkovo Institute of Science and Technology Novaya St., 100, Skolkovo 143025, Russian Federation.

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Cambridge CB3 0WA, UK.

出版信息

Nat Mater. 2017 Nov;16(11):1120-1126. doi: 10.1038/nmat4971. Epub 2017 Sep 25.

Abstract

The vast majority of real-life optimization problems with a large number of degrees of freedom are intractable by classical computers, since their complexity grows exponentially fast with the number of variables. Many of these problems can be mapped into classical spin models, such as the Ising, the XY or the Heisenberg models, so that optimization problems are reduced to finding the global minimum of spin models. Here, we propose and investigate the potential of polariton graphs as an efficient analogue simulator for finding the global minimum of the XY model. By imprinting polariton condensate lattices of bespoke geometries we show that we can engineer various coupling strengths between the lattice sites and read out the result of the global minimization through the relative phases. Besides solving optimization problems, polariton graphs can simulate a large variety of systems undergoing the U(1) symmetry-breaking transition. We realize various magnetic phases, such as ferromagnetic, anti-ferromagnetic, and frustrated spin configurations on a linear chain, the unit cells of square and triangular lattices, a disordered graph, and demonstrate the potential for size scalability on an extended square lattice of 45 coherently coupled polariton condensates. Our results provide a route to study unconventional superfluids, spin liquids, Berezinskii-Kosterlitz-Thouless phase transition, and classical magnetism, among the many systems that are described by the XY Hamiltonian.

摘要

现实生活中绝大多数具有大量自由度的优化问题对于传统计算机来说是难以处理的,因为它们的复杂度会随着变量数量呈指数级快速增长。其中许多问题可以映射到经典自旋模型,如伊辛模型、XY模型或海森堡模型,这样优化问题就简化为寻找自旋模型的全局最小值。在此,我们提出并研究极化激元图作为寻找XY模型全局最小值的有效模拟模拟器的潜力。通过刻写定制几何形状的极化激元凝聚晶格,我们表明可以设计晶格位点之间的各种耦合强度,并通过相对相位读出全局最小化的结果。除了解决优化问题,极化激元图还可以模拟经历U(1)对称性破缺转变的各种系统。我们在一维链、正方形和三角形晶格的晶胞、无序图上实现了各种磁相,如铁磁、反铁磁和受挫自旋构型,并展示了在由45个相干耦合的极化激元凝聚体组成的扩展正方形晶格上实现尺寸可扩展性的潜力。我们的结果为研究非常规超流体、自旋液体、贝雷津斯基-科斯特利茨- Thouless相变以及经典磁性提供了一条途径,这些都是由XY哈密顿量描述的众多系统中的一部分。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验