Kim Kab-Jin, Kim Se Kwon, Hirata Yuushou, Oh Se-Hyeok, Tono Takayuki, Kim Duck-Ho, Okuno Takaya, Ham Woo Seung, Kim Sanghoon, Go Gyoungchoon, Tserkovnyak Yaroslav, Tsukamoto Arata, Moriyama Takahiro, Lee Kyung-Jin, Ono Teruo
Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.
Department of Physics, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea.
Nat Mater. 2017 Dec;16(12):1187-1192. doi: 10.1038/nmat4990. Epub 2017 Sep 25.
Antiferromagnetic spintronics is an emerging research field which aims to utilize antiferromagnets as core elements in spintronic devices. A central motivation towards this direction is that antiferromagnetic spin dynamics is expected to be much faster than its ferromagnetic counterpart. Recent theories indeed predicted faster dynamics of antiferromagnetic domain walls (DWs) than ferromagnetic DWs. However, experimental investigations of antiferromagnetic spin dynamics have remained unexplored, mainly because of the magnetic field immunity of antiferromagnets. Here we show that fast field-driven antiferromagnetic spin dynamics is realized in ferrimagnets at the angular momentum compensation point T. Using rare earth-3d-transition metal ferrimagnetic compounds where net magnetic moment is nonzero at T, the field-driven DW mobility is remarkably enhanced up to 20 km s T. The collective coordinate approach generalized for ferrimagnets and atomistic spin model simulations show that this remarkable enhancement is a consequence of antiferromagnetic spin dynamics at T. Our finding allows us to investigate the physics of antiferromagnetic spin dynamics and highlights the importance of tuning of the angular momentum compensation point of ferrimagnets, which could be a key towards ferrimagnetic spintronics.
反铁磁自旋电子学是一个新兴的研究领域,旨在将反铁磁体用作自旋电子器件的核心元件。朝着这个方向发展的一个核心动机是,预计反铁磁自旋动力学比铁磁自旋动力学要快得多。最近的理论确实预测,反铁磁畴壁(DWs)的动力学比铁磁畴壁更快。然而,反铁磁自旋动力学的实验研究一直未被探索,主要是因为反铁磁体对磁场具有免疫性。在此,我们表明在角动量补偿点T处,在亚铁磁体中实现了快速场驱动的反铁磁自旋动力学。使用在T处净磁矩不为零的稀土-3d过渡金属亚铁磁化合物,场驱动的畴壁迁移率显著提高,高达20 km s T。针对亚铁磁体推广的集体坐标方法和原子自旋模型模拟表明,这种显著增强是T处反铁磁自旋动力学的结果。我们的发现使我们能够研究反铁磁自旋动力学的物理原理,并突出了调节亚铁磁体角动量补偿点的重要性,这可能是通向亚铁磁自旋电子学的关键。