Center for Climatic Research, University of Wisconsin-Madison, Madison, WI 53706;
Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, WI 53706.
Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):11075-11080. doi: 10.1073/pnas.1704512114. Epub 2017 Oct 2.
The large-scale reorganization of deep ocean circulation in the Atlantic involving changes in North Atlantic Deep Water (NADW) and Antarctic Bottom Water (AABW) played a critical role in regulating hemispheric and global climate during the last deglaciation. However, changes in the relative contributions of NADW and AABW and their properties are poorly constrained by marine records, including δO of benthic foraminiferal calcite (δO). Here, we use an isotope-enabled ocean general circulation model with realistic geometry and forcing conditions to simulate the deglacial water mass and δO evolution. Model results suggest that, in response to North Atlantic freshwater forcing during the early phase of the last deglaciation, NADW nearly collapses, while AABW mildly weakens. Rather than reflecting changes in NADW or AABW properties caused by freshwater input as suggested previously, the observed phasing difference of deep δO likely reflects early warming of the deep northern North Atlantic by ∼1.4 °C, while deep Southern Ocean temperature remains largely unchanged. We propose a thermodynamic mechanism to explain the early warming in the North Atlantic, featuring a strong middepth warming and enhanced downward heat flux via vertical mixing. Our results emphasize that the way that ocean circulation affects heat, a dynamic tracer, is considerably different from how it affects passive tracers, like δO, and call for caution when inferring water mass changes from δO records while assuming uniform changes in deep temperatures.
大西洋深海大尺度环流的大规模重组,涉及北大西洋深层水(NADW)和南极底层水(AABW)的变化,在末次冰消期调节半球和全球气候方面发挥了关键作用。然而,NADW 和 AABW 的相对贡献及其性质的变化在海洋记录中受到很大限制,包括底栖有孔虫碳酸钙的 δO(δO)。在这里,我们使用具有真实几何形状和强迫条件的同位素赋存海洋环流模型来模拟冰消期的水团和 δO 演化。模型结果表明,响应末次冰消早期北大西洋淡水强迫,NADW 几乎崩溃,而 AABW 略有减弱。与之前提出的由于淡水输入导致 NADW 或 AABW 性质变化不同,观测到的深 δO 的相位差可能反映了深北北大西洋提前变暖约 1.4°C,而深南大洋温度基本保持不变。我们提出了一种热力学机制来解释北大西洋的早期变暖,其特征是中层强烈变暖,并通过垂直混合增强向下热通量。我们的结果强调了海洋环流影响热量(一种动力示踪剂)的方式与它影响被动示踪剂(如 δO)的方式有很大不同,并呼吁在从 δO 记录推断水团变化时要谨慎,同时假设深层温度的均匀变化。