Yang Ziming, Yang Sihang, Van Nostrand Joy D, Zhou Jizhong, Fang Wei, Qi Qi, Liu Yurong, Wullschleger Stan D, Liang Liyuan, Graham David E, Yang Yunfeng, Gu Baohua
Environmental Sciences Division, Oak Ridge National LaboratoryOak Ridge, TN, United States.
Department of Chemistry, Oakland UniversityRochester, MI, United States.
Front Microbiol. 2017 Sep 19;8:1741. doi: 10.3389/fmicb.2017.01741. eCollection 2017.
Microbial decomposition of soil organic carbon (SOC) in thawing Arctic permafrost is important in determining greenhouse gas feedbacks of tundra ecosystems to climate. However, the changes in microbial community structure during SOC decomposition are poorly known. Here we examine these changes using frozen soils from Barrow, Alaska, USA, in anoxic microcosm incubation at -2 and 8°C for 122 days. The functional gene array GeoChip was used to determine microbial community structure and the functional genes associated with SOC degradation, methanogenesis, and Fe(III) reduction. Results show that soil incubation after 122 days at 8°C significantly decreased functional gene abundance ( < 0.05) associated with SOC degradation, fermentation, methanogenesis, and iron cycling, particularly in organic-rich soil. These observations correspond well with decreases in labile SOC content (e.g., reducing sugar and ethanol), methane and CO production, and Fe(III) reduction. In contrast, the community functional structure was largely unchanged in the -2°C incubation. Soil type (i.e., organic vs. mineral) and the availability of labile SOC were among the most significant factors impacting microbial community structure. These results demonstrate the important roles of microbial community in SOC degradation and support previous findings that SOC in organic-rich Arctic tundra is highly vulnerable to microbial degradation under warming.
北极永久冻土融化过程中土壤有机碳(SOC)的微生物分解对于确定苔原生态系统对气候的温室气体反馈至关重要。然而,SOC分解过程中微生物群落结构的变化却鲜为人知。在此,我们使用来自美国阿拉斯加巴罗的冻土,在-2℃和8℃的缺氧微观培养环境中培养122天,以研究这些变化。利用功能基因芯片GeoChip来确定微生物群落结构以及与SOC降解、甲烷生成和铁(III)还原相关的功能基因。结果表明,在8℃下培养122天后,土壤中与SOC降解、发酵、甲烷生成和铁循环相关的功能基因丰度显著降低(<0.05),在富含有机质的土壤中尤为明显。这些观察结果与不稳定SOC含量(如还原糖和乙醇)、甲烷和二氧化碳产量以及铁(III)还原的降低情况高度吻合。相比之下,在-2℃培养环境中,群落功能结构基本未变。土壤类型(即有机土与矿质土)和不稳定SOC的可用性是影响微生物群落结构的最重要因素。这些结果证明了微生物群落在SOC降解中的重要作用,并支持了先前的研究结果,即北极富含有机质的苔原中的SOC在变暖条件下极易受到微生物降解的影响。