De Francesco Ernestina Marianna, Bonuccelli Gloria, Maggiolini Marcello, Sotgia Federica, Lisanti Michael P
Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
The Paterson Institute, University of Manchester, Withington, United Kingdom.
Oncotarget. 2017 Jun 9;8(40):67269-67286. doi: 10.18632/oncotarget.18428. eCollection 2017 Sep 15.
Here, we developed a new synthetic lethal strategy for further optimizing the eradication of cancer stem cells (CSCs). Briefly, we show that chronic treatment with the FDA-approved antibiotic Doxycycline effectively reduces cellular respiration, by targeting mitochondrial protein translation. The expression of four mitochondrial DNA encoded proteins (MT-ND3, MT-CO2, MT-ATP6 and MT-ATP8) is suppressed, by up to 35-fold. This high selection pressure metabolically synchronizes the surviving cancer cell sub-population towards a predominantly glycolytic phenotype, resulting in metabolic inflexibility. We directly validated this Doxycycline-induced glycolytic phenotype, by using metabolic flux analysis and label-free unbiased proteomics. Next, we identified two natural products (Vitamin C and Berberine) and six clinically-approved drugs, for metabolically targeting the Doxycycline-resistant CSC population (Atovaquone, Irinotecan, Sorafenib, Niclosamide, Chloroquine, and Stiripentol). This new combination strategy allows for the more efficacious eradication of CSCs with Doxycycline, and provides a simple pragmatic solution to the possible development of Doxycycline-resistance in cancer cells. In summary, we propose the combined use of i) Doxycycline (Hit-1: targeting mitochondria) and ii) Vitamin C (Hit-2: targeting glycolysis), which represents a new synthetic-lethal metabolic strategy for eradicating CSCs. This type of metabolic Achilles' heel will allow us and others to more effectively "starve" the CSC population.
在此,我们开发了一种新的合成致死策略,以进一步优化对癌症干细胞(CSCs)的根除。简而言之,我们发现,经美国食品药品监督管理局(FDA)批准的抗生素强力霉素进行长期治疗,通过靶向线粒体蛋白质翻译,可有效降低细胞呼吸作用。四种线粒体DNA编码蛋白(MT-ND3、MT-CO2、MT-ATP6和MT-ATP8)的表达被抑制,抑制程度高达35倍。这种高选择压力使存活的癌细胞亚群在代谢上同步转变为主要的糖酵解表型,导致代谢灵活性丧失。我们通过代谢通量分析和无标记非偏向蛋白质组学直接验证了强力霉素诱导的糖酵解表型。接下来,我们鉴定出两种天然产物(维生素C和黄连素)以及六种临床批准药物,用于在代谢上靶向对强力霉素耐药的CSC群体(阿托伐醌、伊立替康、索拉非尼、氯硝柳胺、氯喹和司替戊醇)。这种新的联合策略能够更有效地用强力霉素根除CSCs,并为癌细胞中可能出现的强力霉素耐药性提供了一个简单实用的解决方案。总之,我们建议联合使用i)强力霉素(命中靶点1:靶向线粒体)和ii)维生素C(命中靶点2:靶向糖酵解),这代表了一种根除CSCs的新的合成致死代谢策略。这种代谢上的致命弱点将使我们和其他研究人员能够更有效地“饿死”CSC群体。