Gong Ming, Cao Zhi, Liu Wei, Nichols Eva M, Smith Peter T, Derrick Jeffrey S, Liu Yi-Sheng, Liu Jinjia, Wen Xiaodong, Chang Christopher J
Department of Chemistry, Department of Molecular and Cell Biology, and Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States.
Chemical Sciences Division and The Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States.
ACS Cent Sci. 2017 Sep 27;3(9):1032-1040. doi: 10.1021/acscentsci.7b00316. Epub 2017 Sep 13.
Conversion of carbon monoxide (CO), a major one-carbon product of carbon dioxide (CO) reduction, into value-added multicarbon species is a challenge to addressing global energy demands and climate change. Here we report a modular synthetic approach for aqueous electrochemical CO reduction to carbon-carbon coupled products via self-assembly of supramolecular cages at molecular-materials interfaces. Heterobimetallic cavities formed by face-to-face coordination of thiol-terminated metalloporphyrins to copper electrodes through varying organic struts convert CO to C2 products with high faradaic efficiency (FE = 83% total with 57% to ethanol) and current density (1.34 mA/cm) at a potential of -0.40 V vs RHE. The cage-functionalized electrodes offer an order of magnitude improvement in both selectivity and activity for electrocatalytic carbon fixation compared to parent copper surfaces or copper functionalized with porphyrins in an edge-on orientation.
将一氧化碳(CO)(二氧化碳还原的主要一碳产物)转化为增值多碳物种是应对全球能源需求和气候变化的一项挑战。在此,我们报告了一种模块化合成方法,用于通过超分子笼在分子-材料界面的自组装,将水性电化学CO还原为碳-碳偶联产物。通过巯基封端的金属卟啉通过不同的有机支柱与铜电极面对面配位形成的异双金属空腔,在相对于可逆氢电极(RHE)为-0.40 V的电位下,以高法拉第效率(总FE = 83%,其中57%生成乙醇)和电流密度(1.34 mA/cm²)将CO转化为C2产物。与母体铜表面或边缘取向的卟啉功能化铜相比,笼功能化电极在电催化碳固定的选择性和活性方面都提高了一个数量级。