Dong Xuewei, Sun Yunxiang, Wei Guanghong, Nussinov Ruth, Ma Buyong
Department of Physics, State Key Laboratory of Surface physics, Key Laboratory for Computational Physical Science (Ministry of Education), Collaborative Innovation Center of Advanced Microstructures (Nanjing), Fudan University, Shanghai 200433, People's Republic of China.
Phys Chem Chem Phys. 2017 Oct 18;19(40):27556-27569. doi: 10.1039/c7cp05959k.
Alzheimer's disease, a common neurodegenerative disease, is characterized by the aggregation of amyloid-β (Aβ) peptides. The interactions of Aβ with membranes cause changes in membrane morphology and ion permeation, which are responsible for its neurotoxicity and can accelerate fibril growth. However, the Aβ-lipid interactions and how these induce membrane perturbation and disruption at the atomic level and the consequences for the Aβ organization are not entirely understood. Here, we perform multiple atomistic molecular dynamics simulations on three protofibrillar Aβ trimers. Our simulations show that, regardless of the morphologies and the initial orientations of the three different protofibrillar Aβ trimers, the N-terminal β-sheet of all trimers preferentially binds to the membrane surface. The POPG lipid bilayers enhance the structural stability of protofibrillar Aβ trimers by stabilizing inter-peptide β-sheets and D23-K28 salt-bridges. The interaction causes local membrane thinning. We found that the trimer structure related to Alzheimer's disease brain tissue () is the most stable both in water solution and at membrane surface, and displays slightly stronger membrane perturbation capability. These results provide mechanistic insights into the membrane-enhanced structural stability of protofibrillar Aβ oligomers and the first step of Aβ-induced membrane disruption at the atomic level.
阿尔茨海默病是一种常见的神经退行性疾病,其特征是β淀粉样蛋白(Aβ)肽的聚集。Aβ与膜的相互作用会导致膜形态和离子渗透的变化,这是其神经毒性的原因,并可加速纤维生长。然而,Aβ与脂质的相互作用以及这些相互作用如何在原子水平上引起膜扰动和破坏以及对Aβ组装的影响尚未完全了解。在这里,我们对三种原纤维状Aβ三聚体进行了多次原子尺度的分子动力学模拟。我们的模拟表明,无论三种不同原纤维状Aβ三聚体的形态和初始取向如何,所有三聚体的N端β折叠都优先与膜表面结合。POPG脂质双层通过稳定肽间β折叠和D23-K28盐桥来增强原纤维状Aβ三聚体的结构稳定性。这种相互作用导致局部膜变薄。我们发现,与阿尔茨海默病脑组织相关的三聚体结构在水溶液和膜表面都是最稳定的,并且表现出略强的膜扰动能力。这些结果为原纤维状Aβ寡聚体的膜增强结构稳定性以及Aβ诱导膜破坏在原子水平上的第一步提供了机制性见解。