Suppr超能文献

间充质干细胞代谢网络模型在控制细胞增殖和分化中的应用。

Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation.

作者信息

Fouladiha Hamideh, Marashi Sayed-Amir, Shokrgozar Mohammad Ali, Farokhi Mehdi, Atashi Amir

机构信息

Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran.

National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.

出版信息

Cytotechnology. 2018 Feb;70(1):331-338. doi: 10.1007/s10616-017-0148-6. Epub 2017 Oct 4.

Abstract

Mesenchymal stem cells (MSCs) can be isolated from several tissues of adults. In addition, MSCs have the potential of differentiation into several cell types. Therefore, MSCs are very useful in stem cell therapy and regenerative medicine. MSCs have also been used as gene or protein carriers. As a result, maintaining MSCs in a desirable metabolic state has been the subject of several studies. Here, we used a genome scale metabolic network model of bone marrow derived MSCs for exploring the metabolism of these cells. We analyzed metabolic fluxes of the model in order to find ways of increasing stem cell proliferation and differentiation. Consequently, the experimental results were in consistency with computational results. Therefore, analyzing metabolic models was proven to be a promising field in biomedical researches of stem cells.

摘要

间充质干细胞(MSCs)可从成人的多种组织中分离得到。此外,间充质干细胞具有分化为多种细胞类型的潜力。因此,间充质干细胞在干细胞治疗和再生医学中非常有用。间充质干细胞也被用作基因或蛋白质载体。因此,将间充质干细胞维持在理想的代谢状态一直是多项研究的主题。在这里,我们使用了骨髓来源的间充质干细胞的基因组规模代谢网络模型来探索这些细胞的代谢。我们分析了该模型的代谢通量,以寻找增加干细胞增殖和分化的方法。因此,实验结果与计算结果一致。因此,分析代谢模型被证明是干细胞生物医学研究中有前景的领域。

相似文献

1
Applications of a metabolic network model of mesenchymal stem cells for controlling cell proliferation and differentiation.
Cytotechnology. 2018 Feb;70(1):331-338. doi: 10.1007/s10616-017-0148-6. Epub 2017 Oct 4.
2
Bone marrow from periacetabular osteotomies as a novel source for human mesenchymal stromal cells.
Stem Cell Res Ther. 2023 Nov 3;14(1):315. doi: 10.1186/s13287-023-03552-9.
4
An update on human periapical cyst-mesenchymal stem cells and their potential applications in regenerative medicine.
Mol Biol Rep. 2020 Mar;47(3):2381-2389. doi: 10.1007/s11033-020-05298-6. Epub 2020 Feb 6.
6
Osteogenic Differentiation Potential of Human Bone Marrow and Amniotic Fluid-Derived Mesenchymal Stem Cells in Vitro & in Vivo.
Open Access Maced J Med Sci. 2019 Feb 14;7(4):507-515. doi: 10.3889/oamjms.2019.124. eCollection 2019 Feb 28.

本文引用的文献

1
Biomedical applications of cell- and tissue-specific metabolic network models.
J Biomed Inform. 2017 Apr;68:35-49. doi: 10.1016/j.jbi.2017.02.014. Epub 2017 Feb 24.
2
Quantification of Metabolic Rearrangements During Neural Stem Cells Differentiation into Astrocytes by Metabolic Flux Analysis.
Neurochem Res. 2017 Jan;42(1):244-253. doi: 10.1007/s11064-016-1907-z. Epub 2016 Apr 12.
3
Connecting Mitochondria, Metabolism, and Stem Cell Fate.
Stem Cells Dev. 2015 Sep 1;24(17):1957-71. doi: 10.1089/scd.2015.0117. Epub 2015 Jul 2.
5
Optimizing eukaryotic cell hosts for protein production through systems biotechnology and genome-scale modeling.
Biotechnol J. 2015 Jul;10(7):939-49. doi: 10.1002/biot.201400647. Epub 2015 Jun 23.
6
Using Genome-scale Models to Predict Biological Capabilities.
Cell. 2015 May 21;161(5):971-987. doi: 10.1016/j.cell.2015.05.019.
7
Methods and advances in metabolic flux analysis: a mini-review.
J Ind Microbiol Biotechnol. 2015 Mar;42(3):317-25. doi: 10.1007/s10295-015-1585-x. Epub 2015 Jan 23.
8
Genome-scale modeling for metabolic engineering.
J Ind Microbiol Biotechnol. 2015 Mar;42(3):327-38. doi: 10.1007/s10295-014-1576-3. Epub 2015 Jan 13.
9
Next-generation genome-scale models for metabolic engineering.
Curr Opin Biotechnol. 2015 Dec;35:23-9. doi: 10.1016/j.copbio.2014.12.016. Epub 2015 Jan 7.
10
Reconstruction of a generic metabolic network model of cancer cells.
Mol Biosyst. 2014 Nov;10(11):3014-21. doi: 10.1039/c4mb00300d.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验