BASF SE Carl-Bosch-Straße 38 , 67056 Ludwigshafen am Rhein, Germany.
InnovationLab GmbH Speyerer Str. 4 , 69115 Heidelberg, Germany.
Nano Lett. 2018 Jan 10;18(1):9-14. doi: 10.1021/acs.nanolett.7b03789. Epub 2017 Oct 10.
The functionality of common organic semiconductor materials is determined by their chemical structure and crystal modification. While the former can be fine-tuned via synthesis, a priori control over the crystal structure has remained elusive. We show that the surface tension is the main driver for the plate-like crystallization of a novel small organic molecule n-type semiconductor at the liquid-air interface. This interface provides an ideal environment for the growth of millimeter-sized semiconductor platelets that are only few nanometers thick and thus highly attractive for application in transistors. On the basis of the novel high-performance perylene diimide, we show in as-grown, only 3 nm thin crystals electron mobilities of above 4 cm/(V s) and excellent bias stress stability. We suggest that the established systematics on solvent parameters can provide the basis of a general framework for a more deterministic crystallization of other small molecules.
常见有机半导体材料的功能取决于其化学结构和晶体修饰。虽然前者可以通过合成进行微调,但对晶体结构的先验控制仍然难以实现。我们表明,表面张力是新型小分子 n 型半导体在液-气界面上呈板状结晶的主要驱动力。该界面为毫米级半导体薄片的生长提供了理想的环境,这些薄片只有几纳米厚,因此非常适合应用于晶体管。基于新型高性能苝二酰亚胺,我们在生长的、仅 3nm 厚的晶体中展示了超过 4cm/(V·s)的电子迁移率和出色的偏压稳定性。我们建议,溶剂参数的既定系统可以为其他小分子更确定的结晶提供一个通用框架的基础。