Suppr超能文献

具有晶圆级均匀性的高三原子层厚度半导体薄膜。

High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity.

机构信息

Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, USA.

School of Applied and Engineering Physics, Cornell University, Ithaca, New York 14853, USA.

出版信息

Nature. 2015 Apr 30;520(7549):656-60. doi: 10.1038/nature14417.

Abstract

The large-scale growth of semiconducting thin films forms the basis of modern electronics and optoelectronics. A decrease in film thickness to the ultimate limit of the atomic, sub-nanometre length scale, a difficult limit for traditional semiconductors (such as Si and GaAs), would bring wide benefits for applications in ultrathin and flexible electronics, photovoltaics and display technology. For this, transition-metal dichalcogenides (TMDs), which can form stable three-atom-thick monolayers, provide ideal semiconducting materials with high electrical carrier mobility, and their large-scale growth on insulating substrates would enable the batch fabrication of atomically thin high-performance transistors and photodetectors on a technologically relevant scale without film transfer. In addition, their unique electronic band structures provide novel ways of enhancing the functionalities of such devices, including the large excitonic effect, bandgap modulation, indirect-to-direct bandgap transition, piezoelectricity and valleytronics. However, the large-scale growth of monolayer TMD films with spatial homogeneity and high electrical performance remains an unsolved challenge. Here we report the preparation of high-mobility 4-inch wafer-scale films of monolayer molybdenum disulphide (MoS2) and tungsten disulphide, grown directly on insulating SiO2 substrates, with excellent spatial homogeneity over the entire films. They are grown with a newly developed, metal-organic chemical vapour deposition technique, and show high electrical performance, including an electron mobility of 30 cm(2) V(-1) s(-1) at room temperature and 114 cm(2) V(-1) s(-1) at 90 K for MoS2, with little dependence on position or channel length. With the use of these films we successfully demonstrate the wafer-scale batch fabrication of high-performance monolayer MoS2 field-effect transistors with a 99% device yield and the multi-level fabrication of vertically stacked transistor devices for three-dimensional circuitry. Our work is a step towards the realization of atomically thin integrated circuitry.

摘要

半导体薄膜的大规模生长是现代电子学和光电子学的基础。将薄膜厚度减小到原子、亚纳米长度尺度的极限,对于传统半导体(如 Si 和 GaAs)来说是一个困难的限制,这将为超薄和柔性电子学、光伏和显示技术带来广泛的应用益处。为此,过渡金属二卤化物(TMD)可以形成稳定的三层原子厚的单层,为具有高载流子迁移率的理想半导体材料提供了条件,它们在绝缘衬底上的大规模生长将使原子级薄的高性能晶体管和光电探测器能够在技术相关的规模上进行批量制造,而无需进行薄膜转移。此外,它们独特的电子能带结构为增强这些器件的功能提供了新的途径,包括大激子效应、能带隙调制、间接到直接能带隙跃迁、压电性和谷电子学。然而,具有空间均匀性和高电性能的单层 TMD 薄膜的大规模生长仍然是一个未解决的挑战。在这里,我们报告了在绝缘 SiO2 衬底上直接生长的高质量迁移率 4 英寸晶圆级单层二硫化钼(MoS2)和二硫化钨薄膜的制备,整个薄膜具有出色的空间均匀性。它们是使用新开发的金属有机化学气相沉积技术生长的,表现出优异的电性能,包括室温下电子迁移率为 30 cm2 V-1 s-1,90 K 时为 114 cm2 V-1 s-1,对位置或沟道长度的依赖性很小。我们使用这些薄膜成功地演示了晶圆级批量制造高性能单层 MoS2 场效应晶体管,器件合格率达到 99%,并实现了用于三维电路的垂直堆叠晶体管器件的多级制造。我们的工作朝着实现原子级薄的集成电路迈出了一步。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验