Suppr超能文献

通过量子点阵列的势垒宽度进行精确的耦合工程。

Precise engineering of quantum dot array coupling through their barrier widths.

作者信息

Piquero-Zulaica Ignacio, Lobo-Checa Jorge, Sadeghi Ali, El-Fattah Zakaria M Abd, Mitsui Chikahiko, Okamoto Toshihiro, Pawlak Rémy, Meier Tobias, Arnau Andrés, Ortega J Enrique, Takeya Jun, Goedecker Stefan, Meyer Ernst, Kawai Shigeki

机构信息

Centro de Física de Materiales CSIC/UPV-EHU-Materials Physics Center, Manuel Lardizabal 5, E-20018, San Sebastián, Spain.

Instituto de Ciencia de Materiales de Aragón (ICMA), CSIC-Universidad de Zaragoza, E-50009, Zaragoza, Spain.

出版信息

Nat Commun. 2017 Oct 5;8(1):787. doi: 10.1038/s41467-017-00872-2.

Abstract

Quantum dots are known to confine electrons within their structure. Whenever they periodically aggregate into arrays and cooperative interactions arise, novel quantum properties suitable for technological applications show up. Control over the potential barriers existing between neighboring quantum dots is therefore essential to alter their mutual crosstalk. Here we show that precise engineering of the barrier width can be experimentally achieved on surfaces by a single atom substitution in a haloaromatic compound, which in turn tunes the confinement properties through the degree of quantum dot intercoupling. We achieved this by generating self-assembled molecular nanoporous networks that confine the two-dimensional electron gas present at the surface. Indeed, these extended arrays form up on bulk surface and thin silver films alike, maintaining their overall interdot coupling. These findings pave the way to reach full control over two-dimensional electron gases by means of self-assembled molecular networks.Arrays of quantum dots can exhibit a variety of quantum properties, being sensitive to their spacing. Here, the authors fine tune interdot coupling using hexagonal molecular networks in which the dots are separated by single or double haloaromatic compounds, structurally identical but for a single atom.

摘要

众所周知,量子点能够将电子限制在其结构内部。每当它们周期性地聚集成阵列并产生协同相互作用时,就会出现适用于技术应用的新型量子特性。因此,控制相邻量子点之间存在的势垒对于改变它们的相互串扰至关重要。在此,我们表明,通过在卤代芳烃化合物中进行单原子取代,可以在实验上实现对表面势垒宽度的精确调控,这反过来又通过量子点间耦合程度来调节限制特性。我们通过生成自组装分子纳米多孔网络来实现这一点,该网络能够限制表面存在的二维电子气。实际上,这些扩展阵列在块状表面和银薄膜上均能形成,同时保持其整体点间耦合。这些发现为通过自组装分子网络实现对二维电子气的完全控制铺平了道路。量子点阵列可以表现出各种量子特性,对其间距很敏感。在此,作者使用六边形分子网络微调点间耦合,在该网络中,量子点由单卤代芳烃化合物或双卤代芳烃化合物隔开,除了一个原子外结构相同。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验