Suppr超能文献

16半导体量子点交叉阵列的共享控制

Shared control of a 16 semiconductor quantum dot crossbar array.

作者信息

Borsoi Francesco, Hendrickx Nico W, John Valentin, Meyer Marcel, Motz Sayr, van Riggelen Floor, Sammak Amir, de Snoo Sander L, Scappucci Giordano, Veldhorst Menno

机构信息

QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.

QuTech and Netherlands Organisation for Applied Scientific Research (TNO), Delft, The Netherlands.

出版信息

Nat Nanotechnol. 2024 Jan;19(1):21-27. doi: 10.1038/s41565-023-01491-3. Epub 2023 Aug 28.

Abstract

The efficient control of a large number of qubits is one of the most challenging aspects for practical quantum computing. Current approaches in solid-state quantum technology are based on brute-force methods, where each and every qubit requires at least one unique control line-an approach that will become unsustainable when scaling to the required millions of qubits. Here, inspired by random-access architectures in classical electronics, we introduce the shared control of semiconductor quantum dots to efficiently operate a two-dimensional crossbar array in planar germanium. We tune the entire array, comprising 16 quantum dots, to the few-hole regime. We then confine an odd number of holes in each site to isolate an unpaired spin per dot. Moving forward, we demonstrate on a vertical and a horizontal double quantum dot a method for the selective control of the interdot coupling and achieve a tunnel coupling tunability over more than 10 GHz. The operation of a quantum electronic device with fewer control terminals than tunable experimental parameters represents a compelling step forward in the construction of scalable quantum technology.

摘要

对大量量子比特进行有效控制是实际量子计算中最具挑战性的方面之一。固态量子技术目前的方法基于蛮力方法,即每个量子比特至少需要一条独特的控制线——当扩展到所需的数百万个量子比特时,这种方法将变得不可持续。在此,受经典电子学中随机存取架构的启发,我们引入了半导体量子点的共享控制,以有效地操作平面锗中的二维交叉阵列。我们将包含16个量子点的整个阵列调谐到少空穴状态。然后,我们在每个位点限制奇数个空穴,以隔离每个量子点的未配对自旋。展望未来,我们在垂直和水平双量子点上展示了一种选择性控制量子点间耦合的方法,并实现了超过10 GHz的隧道耦合可调性。与可调实验参数相比,具有更少控制终端的量子电子器件的运行代表了可扩展量子技术构建中引人注目的进步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f9c/10796274/36ba52e936c3/41565_2023_1491_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验