Institut de Biologie Moleculaire des Plantes (IBMP), CNRS, University of Strasbourg, Strasbourg, France.
Wiley Interdiscip Rev RNA. 2018 Jan;9(1). doi: 10.1002/wrna.1440. Epub 2017 Oct 5.
RNA uridylation is a potent and widespread posttranscriptional regulator of gene expression. RNA uridylation has been detected in a range of eukaryotes including trypanosomes, animals, plants, and fungi, but with the noticeable exception of budding yeast. Virtually all classes of eukaryotic RNAs can be uridylated and uridylation can also tag viral RNAs. The untemplated addition of a few uridines at the 3' end of a transcript can have a decisive impact on RNA's fate. In rare instances, uridylation is an intrinsic step in the maturation of noncoding RNAs like for the U6 spliceosomal RNA or mitochondrial guide RNAs in trypanosomes. Uridylation can also switch specific miRNA precursors from a degradative to a processing mode. This switch depends on the number of uridines added which is regulated by the cellular context. Yet, the typical consequence of uridylation on mature noncoding RNAs or their precursors is to accelerate decay. Importantly, mRNAs are also tagged by uridylation. In fact, the advent of novel high throughput sequencing protocols has recently revealed the pervasiveness of mRNA uridylation, from plants to humans. As for noncoding RNAs, the main function to date for mRNA uridylation is to promote degradation. Yet, additional roles begin to be ascribed to U-tailing such as the control of mRNA deadenylation, translation control and possibly storage. All these new findings illustrate that we are just beginning to appreciate the diversity of roles played by RNA uridylation and its full temporal and spatial implication in regulating gene expression. WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 This article is categorized under: RNA Processing > 3' End Processing RNA Processing > RNA Editing and Modification RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
RNA 尿苷酰化是一种强大且广泛存在的基因表达转录后调控方式。尿苷酰化已在多种真核生物中被检测到,包括原生动物、动物、植物和真菌,但酵母除外。实际上,所有类别的真核 RNA 都可以被尿苷酰化,尿苷酰化也可以标记病毒 RNA。在转录本的 3' 端添加几个非模板尿苷,可以对 RNA 的命运产生决定性的影响。在极少数情况下,尿苷酰化是一些非编码 RNA 成熟的内在步骤,如 U6 剪接体 RNA 或原生动物中的线粒体指导 RNA。尿苷酰化还可以将特定的 miRNA 前体从降解模式转换为加工模式。这种转换取决于添加的尿苷数量,而添加的尿苷数量由细胞环境调节。然而,尿苷酰化对成熟的非编码 RNA 或其前体的典型后果是加速降解。重要的是,mRNA 也被尿苷酰化标记。事实上,最近新的高通量测序技术的出现揭示了从植物到人,mRNA 尿苷酰化的普遍性。与非编码 RNA 一样,迄今为止,mRNA 尿苷酰化的主要功能是促进降解。然而,人们开始将 U 尾加的功能归因于其他方面,如控制 mRNA 脱腺苷酸化、翻译控制和可能的储存。所有这些新发现都表明,我们才刚刚开始了解 RNA 尿苷酰化的多样性及其在调控基因表达方面的全部时间和空间意义。WIREs RNA 2018, 9:e1440. doi: 10.1002/wrna.1440 本文归入以下类别: RNA 加工 > 3' 端加工 RNA 加工 > RNA 编辑和修饰 RNA 周转和监控 > 周转/监控机制。