Suppr超能文献

一种用于癌症药物敏感性预测的链接预测方法。

A link prediction approach to cancer drug sensitivity prediction.

作者信息

Turki Turki, Wei Zhi

机构信息

Department of Computer Science, King Abdulaziz University, P.O. Box 80221, Jeddah, 21589, Saudi Arabia.

Bioinformatics Program and Department of Computer Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.

出版信息

BMC Syst Biol. 2017 Oct 3;11(Suppl 5):94. doi: 10.1186/s12918-017-0463-8.

Abstract

BACKGROUND

Predicting the response to a drug for cancer disease patients based on genomic information is an important problem in modern clinical oncology. This problem occurs in part because many available drug sensitivity prediction algorithms do not consider better quality cancer cell lines and the adoption of new feature representations; both lead to the accurate prediction of drug responses. By predicting accurate drug responses to cancer, oncologists gain a more complete understanding of the effective treatments for each patient, which is a core goal in precision medicine.

RESULTS

In this paper, we model cancer drug sensitivity as a link prediction, which is shown to be an effective technique. We evaluate our proposed link prediction algorithms and compare them with an existing drug sensitivity prediction approach based on clinical trial data. The experimental results based on the clinical trial data show the stability of our link prediction algorithms, which yield the highest area under the ROC curve (AUC) and are statistically significant.

CONCLUSIONS

We propose a link prediction approach to obtain new feature representation. Compared with an existing approach, the results show that incorporating the new feature representation to the link prediction algorithms has significantly improved the performance.

摘要

背景

基于基因组信息预测癌症患者对药物的反应是现代临床肿瘤学中的一个重要问题。出现这个问题的部分原因是,许多现有的药物敏感性预测算法没有考虑质量更好的癌细胞系以及新特征表示的采用;而这两者对于准确预测药物反应都很重要。通过准确预测癌症的药物反应,肿瘤学家能够更全面地了解每位患者的有效治疗方法,这是精准医学的核心目标。

结果

在本文中,我们将癌症药物敏感性建模为一种链接预测,结果表明这是一种有效的技术。我们评估了所提出的链接预测算法,并将其与基于临床试验数据的现有药物敏感性预测方法进行比较。基于临床试验数据的实验结果表明了我们的链接预测算法的稳定性,这些算法产生了最高的ROC曲线下面积(AUC),并且具有统计学意义。

结论

我们提出了一种链接预测方法来获得新的特征表示。与现有方法相比,结果表明将新的特征表示纳入链接预测算法显著提高了性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5514/5629619/d22cf4b58dc5/12918_2017_463_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验