Department of Physics and Astronomy, University of Victoria, PO Box 1700 ST CSC, Victoria, BC, V8W 2Y2, Canada.
Sirius Medicine LLC, PO Box 414, Half Moon Bay, CA, 94019, USA.
Med Phys. 2017 Dec;44(12):6548-6559. doi: 10.1002/mp.12619. Epub 2017 Oct 28.
To determine the most suitable lesion size and depth for radiotherapy treatments with a prototype kilovoltage x-ray arc therapy (KVAT) system through Monte Carlo simulations of the dose delivered to lesion, dose homogeneity, and lesion-to-skin ratio.
Monte Carlo simulations were used to calculate dose distributions generated by a novel low-energy kilovoltage x-ray system to a variety of clinically relevant lesion sizes and depths in phantoms and for hypothetical partial breast irradiations of patients in supine and prone positions. The treatments by 200 kV KVAT system were modeled for four sizes of tumor (1-4 cm diameter) at three depths (superficial, middle, and deep) in two sizes of cylindrical water phantoms (16.2-cm and 32.2-cm diameter). In addition, treatments of 3-cm and 4-cm diameter lesions were modeled for two breast patients in prone and supine positions. Dose distributions were calculated using the EGSnrc/DOSXYZnrc code package. Phantom study metrics included lesion-to-skin ratio, dose delivered to isocenter (cGy/min), dose homogeneity, dose profiles, and cumulative dose volume histograms. Lesion-to-skin ratio, lesion-to-rib ratio, dose profiles, and cumulative dose volume histograms were used to evaluate simulated breast patient treatments. Supine breast irradiations were compared to 6-MV VMAT plans. The criterion applied to evaluate the dose distributions was derived from NSABP-B39/RTOG 0413 for accelerated partial breast irradiation. Skin dose was limited to a maximum of 250 cGy for a prescribed lesion dose of 385 cGy per fraction (with the whole treatment being delivered in 10 fractions). This produced the minimum lesion-to-skin dose ratio of 1.5 that served as the main guideline, along with other metrics, for evaluation of future clinical viability of treatments.
Phantom dose distributions in the centrally located lesions treated with 360-degree KVAT were found to be superior to dose distributions in off-center lesions with the exception of isocenter dose, which was highest for lesions located closer to the phantom surface. Dose metrics were more favorable for smaller lesions, suggesting that KVAT might be most suitable for treatment of lesions of 1-2 cm in diameter down to depths of 8.1 cm along with 3 cm lesions at depths from 3 cm to 8.1 cm. In addition, treatments of 4-cm lesions were found to be acceptable down to the depths of 4.1 cm (in the 16.2-cm phantom) and 8.1 cm (in the 32.2-cm phantom). At depths from 8.1-cm to 16.1-cm, treatments of 1-cm to 4-cm lesions are possible at the cost of decreased dose rate. KVAT breast treatments in the supine patient position demonstrated that increasing the arc angle and decreasing lesion size improved lesion-to-skin ratio and lesion-to-rib ratio. Supine breast data indicate that 3-cm lesions are treatable at a minimum depth of 3 cm. The 6-MV VMAT plan resulted in lower doses to the ipsilateral lung and the body, but a higher heart dose compared to the KVAT plans. Dose distributions for the prone breast phantoms were superior to the supine cases due to the increased treatment angle of 360-degrees.
Although nonoptimized KVAT dose distributions presented here were of inferior quality to VMAT plans, this work has demonstrated the feasibility of delivering low-energy kilovoltage x-rays to lesions up to 4 cm in diameter to depths of 8.1 cm while sparing surrounding tissue.
通过对体模中各种临床相关病变大小和深度以及假设的仰卧和俯卧位患者部分乳房放疗的剂量分布进行蒙特卡罗模拟,确定原型千伏 X 射线弧形治疗(KVAT)系统进行放射治疗的最佳病变大小和深度。
使用新型低能量千伏 X 射线系统对体模中各种临床相关病变大小和深度以及假设的仰卧和俯卧位患者部分乳房放疗的剂量分布进行了蒙特卡罗模拟。对于 200 kV KVAT 系统的治疗,在两个直径为 16.2 厘米和 32.2 厘米的圆柱形水体模中,对四个大小(1-4 厘米直径)的肿瘤在三个深度(浅层、中层和深层)进行了建模。此外,对俯卧和仰卧位的两名患者的 3 厘米和 4 厘米直径病变进行了建模。使用 EGSnrc/DOSXYZnrc 代码包计算剂量分布。体模研究指标包括病变与皮肤的比值、到达等中心点的剂量(cGy/min)、剂量均匀性、剂量分布和累积剂量体积直方图。使用病变与皮肤的比值、病变与肋骨的比值、剂量分布和累积剂量体积直方图来评估模拟的乳房患者治疗。将仰卧位乳房放疗与 6-MV VMAT 计划进行了比较。用于评估剂量分布的标准来自 NSABP-B39/RTOG 0413 用于加速部分乳房照射。皮肤剂量限制为 250 cGy,规定病变剂量为 385 cGy/分次(整个治疗分为 10 次)。这产生了最小的病变与皮肤剂量比为 1.5,作为主要指导原则,以及其他指标,用于评估未来治疗的临床可行性。
在使用 360 度 KVAT 治疗的中央病变中发现,剂量分布优于偏心病变的剂量分布,除了等中心点的剂量最高,因为病变离体模表面越近。剂量指标对较小的病变更有利,这表明 KVAT 可能最适合治疗直径为 1-2 厘米、深度为 8.1 厘米的病变,以及直径为 3 厘米、深度为 3-8.1 厘米的病变。此外,还发现 4 厘米病变的治疗深度可达到 4.1 厘米(在 16.2 厘米的体模中)和 8.1 厘米(在 32.2 厘米的体模中)。在 8.1 厘米至 16.1 厘米的深度,以降低剂量率为代价,可以治疗 1 厘米至 4 厘米的病变。在仰卧位患者中进行的 KVAT 乳房治疗表明,增加弧形角度和减小病变大小可以提高病变与皮肤的比值和病变与肋骨的比值。仰卧位乳房数据表明,3 厘米的病变可以在最小深度为 3 厘米的情况下进行治疗。与 KVAT 计划相比,6-MV VMAT 计划会导致同侧肺和身体的剂量降低,但心脏的剂量会增加。由于治疗角度增加到 360 度,俯卧位乳房体模的剂量分布优于仰卧位病例。
尽管这里呈现的非优化 KVAT 剂量分布质量不如 VMAT 计划,但这项工作已经证明了向直径达 4 厘米、深度达 8.1 厘米的病变提供低能量千伏 X 射线的可行性,同时还能保护周围组织。