Suppr超能文献

用于靶向抗原呈递细胞的纳米颗粒上的DNA展示

Display of DNA on Nanoparticles for Targeting Antigen Presenting Cells.

作者信息

Molino Nicholas M, Neek Medea, Tucker Jo Anne, Nelson Edward L, Wang Szu-Wen

机构信息

Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697 USA.

Department of Medicine, University of California, Irvine, CA 92697 USA.

出版信息

ACS Biomater Sci Eng. 2017 Apr 10;3(4):496-501. doi: 10.1021/acsbiomaterials.7b00148. Epub 2017 Mar 14.

Abstract

Efficient delivery of antigens is of paramount concern in immunotherapies. We aimed to target antigen presenting cells (APCs) by conjugating CpG oligonucleotides to an E2 protein nanoparticle surface (CpG-PEG-E2). Compared to E2 alone, we observed ~4-fold increase of APC uptake of both CpG-PEG-E2 and E2 conjugated to non-CpG DNA. Furthermore, compared to E2-alone or E2 functionalized solely with polyethylene glycol (PEG), the CpG-PEG-E2 showed enhanced lymph node retention up to at least 48 hr and 2-fold increase in APC uptake , parameters which are advantageous for vaccine success. This suggests that enhanced APC uptake of nanoparticles mediated by oligonucleotide display may help overcome delivery barriers in vaccine development.

摘要

在免疫疗法中,抗原的有效递送至关重要。我们旨在通过将CpG寡核苷酸与E2蛋白纳米颗粒表面偶联(CpG-PEG-E2)来靶向抗原呈递细胞(APC)。与单独的E2相比,我们观察到CpG-PEG-E2和与非CpG DNA偶联的E2对APC的摄取增加了约4倍。此外,与单独的E2或仅用聚乙二醇(PEG)功能化的E2相比,CpG-PEG-E2显示出增强的淋巴结滞留至少达48小时,并且APC摄取增加了2倍,这些参数对疫苗成功有利。这表明由寡核苷酸展示介导的纳米颗粒对APC摄取的增强可能有助于克服疫苗开发中的递送障碍。

相似文献

1
Display of DNA on Nanoparticles for Targeting Antigen Presenting Cells.
ACS Biomater Sci Eng. 2017 Apr 10;3(4):496-501. doi: 10.1021/acsbiomaterials.7b00148. Epub 2017 Mar 14.
2
Data on the uptake of CpG-loaded amino-dextran nanoparticles by antigen-presenting cells.
Data Brief. 2021 Feb 25;35:106883. doi: 10.1016/j.dib.2021.106883. eCollection 2021 Apr.
4
Mannose-poly(ethylene glycol)-linked SPION targeted to antigen presenting cells for magnetic resonance imaging on lymph node.
Carbohydr Polym. 2013 Feb 15;92(2):1586-95. doi: 10.1016/j.carbpol.2012.11.011. Epub 2012 Nov 13.
5
Immunostimulatory Properties of Lipid Modified CpG Oligonucleotides.
Mol Pharm. 2017 Aug 7;14(8):2815-2823. doi: 10.1021/acs.molpharmaceut.7b00335. Epub 2017 Jul 24.
7
Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses.
Biomaterials. 2016 Apr;86:83-91. doi: 10.1016/j.biomaterials.2016.01.056. Epub 2016 Feb 1.
9
Co-delivery of human cancer-testis antigens with adjuvant in protein nanoparticles induces higher cell-mediated immune responses.
Biomaterials. 2018 Feb;156:194-203. doi: 10.1016/j.biomaterials.2017.11.022. Epub 2017 Nov 20.
10
Virus Envelope-Like Self-Assembled Nanoparticles Based on -CD/PEG for Antigens Targeting to Dendritic Cells.
J Biomed Nanotechnol. 2017 Nov 1;13(11):1490-1499. doi: 10.1166/jbn.2017.2441.

引用本文的文献

1
DNA vaccines as promising immuno-therapeutics against cancer: a new insight.
Front Immunol. 2025 Jan 13;15:1498431. doi: 10.3389/fimmu.2024.1498431. eCollection 2024.
2
Delivery of Immunostimulatory Cargos in Nanocarriers Enhances Anti-Tumoral Nanovaccine Efficacy.
Int J Mol Sci. 2023 Jul 29;24(15):12174. doi: 10.3390/ijms241512174.
3
Preparation and Biological Properties of Oligonucleotide-Functionalized Virus-like Particles.
Biomacromolecules. 2023 Jun 12;24(6):2766-2776. doi: 10.1021/acs.biomac.3c00178. Epub 2023 May 31.
5
6
7
Macromolecular assembly of bioluminescent protein nanoparticles for enhanced imaging.
Mater Today Bio. 2022 Oct 8;17:100455. doi: 10.1016/j.mtbio.2022.100455. eCollection 2022 Dec 15.
8
Engineered red blood cells (activating antigen carriers) drive potent T cell responses and tumor regression in mice.
Front Immunol. 2022 Oct 3;13:1015585. doi: 10.3389/fimmu.2022.1015585. eCollection 2022.
9
Immunotherapeutic nanoparticles: From autoimmune disease control to the development of vaccines.
Biomater Adv. 2022 Apr;135:212726. doi: 10.1016/j.bioadv.2022.212726. Epub 2022 Apr 22.
10
Biological Nanoparticles in Vaccine Development.
Front Bioeng Biotechnol. 2022 Mar 23;10:867119. doi: 10.3389/fbioe.2022.867119. eCollection 2022.

本文引用的文献

1
Tropism of CPMV to Professional Antigen Presenting Cells Enables a Platform to Eliminate Chronic Infections.
ACS Biomater Sci Eng. 2015 Nov 9;1(11):1050-1054. doi: 10.1021/acsbiomaterials.5b00344. Epub 2015 Oct 20.
2
Emerging nanotechnologies for cancer immunotherapy.
Exp Biol Med (Maywood). 2016 May;241(10):1116-26. doi: 10.1177/1535370216647123. Epub 2016 May 4.
3
The Human Vaccines Project: A roadmap for cancer vaccine development.
Sci Transl Med. 2016 Apr 13;8(334):334ps9. doi: 10.1126/scitranslmed.aaf0685.
5
Viral-mimicking protein nanoparticle vaccine for eliciting anti-tumor responses.
Biomaterials. 2016 Apr;86:83-91. doi: 10.1016/j.biomaterials.2016.01.056. Epub 2016 Feb 1.
6
Biomaterials and emerging anticancer therapeutics: engineering the microenvironment.
Nat Rev Cancer. 2016 Jan;16(1):56-66. doi: 10.1038/nrc.2015.3.
7
CpG Oligonucleotides as Cancer Vaccine Adjuvants.
Vaccines (Basel). 2015 May 8;3(2):390-407. doi: 10.3390/vaccines3020390.
9
Engineered drug-protein nanoparticle complexes for folate receptor targeting.
Biochem Eng J. 2014 Aug 15;89:33-41. doi: 10.1016/j.bej.2013.09.008.
10
Caged protein nanoparticles for drug delivery.
Curr Opin Biotechnol. 2014 Aug;28:75-82. doi: 10.1016/j.copbio.2013.12.007. Epub 2014 Jan 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验