Ashton Ruth A, Bennett Adam, Yukich Joshua, Bhattarai Achuyt, Keating Joseph, Eisele Thomas P
Center for Applied Malaria Research and Evaluation, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana.
Malaria Elimination Initiative, Global Health Group, University of California San Francisco, San Francisco, California.
Am J Trop Med Hyg. 2017 Sep;97(3_Suppl):46-57. doi: 10.4269/ajtmh.16-0734.
Coverage of malaria control interventions is increasing dramatically across endemic countries. Evaluating the impact of malaria control programs and specific interventions on health indicators is essential to enable countries to select the most effective and appropriate combination of tools to accelerate progress or proceed toward malaria elimination. When key malaria interventions have been proven effective under controlled settings, further evaluations of the impact of the intervention using randomized approaches may not be appropriate or ethical. Alternatives to randomized controlled trials are therefore required for rigorous evaluation under conditions of routine program delivery. Routine health management information system (HMIS) data are a potentially rich source of data for impact evaluation, but have been underused in impact evaluation due to concerns over internal validity, completeness, and potential bias in estimates of program or intervention impact. A range of methodologies were identified that have been used for impact evaluations with malaria outcome indicators generated from HMIS data. Methods used to maximize internal validity of HMIS data are presented, together with recommendations on reducing bias in impact estimates. Interrupted time series and dose-response analyses are proposed as the strongest quasi-experimental impact evaluation designs for analysis of malaria outcome indicators from routine HMIS data. Interrupted time series analysis compares the outcome trend and level before and after the introduction of an intervention, set of interventions or program. The dose-response national platform approach explores associations between intervention coverage or program intensity and the outcome at a subnational (district or health facility catchment) level.
疟疾控制干预措施在各流行国家的覆盖范围正在急剧扩大。评估疟疾控制项目和特定干预措施对健康指标的影响,对于各国选择最有效、最合适的工具组合以加速进展或朝着消除疟疾迈进至关重要。当关键疟疾干预措施在可控环境下已被证明有效时,使用随机方法对干预措施的影响进行进一步评估可能不合适或不符合伦理。因此,在常规项目实施条件下进行严格评估需要采用随机对照试验的替代方法。常规卫生管理信息系统(HMIS)数据是用于影响评估的潜在丰富数据源,但由于对内部有效性、完整性以及项目或干预措施影响估计中的潜在偏差存在担忧,在影响评估中未得到充分利用。已确定一系列方法用于利用HMIS数据生成的疟疾结果指标进行影响评估。本文介绍了用于最大化HMIS数据内部有效性的方法,以及减少影响估计偏差的建议。中断时间序列分析和剂量反应分析被提议作为从常规HMIS数据中分析疟疾结果指标的最强准实验影响评估设计。中断时间序列分析比较了引入一项干预措施、一组干预措施或项目前后的结果趋势和水平。剂量反应国家平台方法在国家以下(地区或卫生设施服务区域)层面探索干预措施覆盖范围或项目强度与结果之间的关联。