From the G.B. Bietti Foundation IRCCS (Savini, Schiano-Lomoriello, Ducoli), Rome, Italy; Regions Hospital Randers (Næser), Randers, Denmark.
From the G.B. Bietti Foundation IRCCS (Savini, Schiano-Lomoriello, Ducoli), Rome, Italy; Regions Hospital Randers (Næser), Randers, Denmark.
J Cataract Refract Surg. 2017 Sep;43(9):1140-1148. doi: 10.1016/j.jcrs.2017.06.040.
To compare keratometric astigmatism (KA) and different modalities of measuring total corneal astigmatism (TCA) for toric intraocular lens (IOL) calculation and optimize corneal measurements to eliminate the residual refractive astigmatism.
G.B. Bietti Foundation IRCCS, Rome, Italy.
Prospective case series.
Patients who had a toric IOL were enrolled. Preoperatively, a Scheimpflug camera (Pentacam HR) was used to measure TCA through ray tracing. Different combinations of measurements at a 3.0 mm diameter, centered on the pupil or the corneal vertex and performed along a ring or within it, were compared. Keratometric astigmatism was measured using the same Scheimpflug camera and a corneal topographer (Keratron). Astigmatism was analyzed with Næser's polar value method. The optimized preoperative corneal astigmatism was back-calculated from the postoperative refractive astigmatism.
The study comprised 62 patients (64 eyes). With both devices, KA produced an overcorrection of with-the-rule (WTR) astigmatism by 0.6 diopter (D) and an undercorrection of against-the-rule (ATR) astigmatism by 0.3 D. The lowest meridional error in refractive astigmatism was achieved by the TCA pupil/zone measurement in WTR eyes (0.27 D overcorrection) and the TCA apex/zone measurement in ATR eyes (0.07 D undercorrection). In the whole sample, no measurement allowed more than 43.75% of eyes to yield an absolute error in astigmatism magnitude lower than 0.5 D. Optimized astigmatism values increased the percentage of eyes with this error up to 57.81%, with no difference compared with the Barrett calculator and the Abulafia-Koch calculator.
Compared with KA, TCA improved calculations for toric IOLs; however, optimization of corneal astigmatism measurements led to more accurate results.
比较角膜散光(KA)和不同模式的总角膜散光(TCA)测量,以用于计算散光人工晶状体(IOL)并优化角膜测量,以消除剩余的屈光性散光。
意大利罗马 G.B. Bietti 基金会 IRCCS。
前瞻性病例系列。
招募了接受散光 IOL 的患者。术前,使用 Scheimpflug 相机(Pentacam HR)通过光线追踪测量 TCA。比较了以瞳孔或角膜顶点为中心、直径为 3.0mm 的不同测量组合,以及在环内或环上进行的测量。使用同一 Scheimpflug 相机和角膜地形图仪(Keratron)测量角膜散光。使用 Næser 极坐标法分析散光。从术后屈光性散光中反算优化的术前角膜散光。
该研究包括 62 名患者(64 只眼)。使用两种设备,KA 对顺规散光的过矫为 0.6 屈光度(D),对逆规散光的欠矫为 0.3 D。在顺规散光眼中,TCA 瞳孔/区测量的屈光性散光最小子午误差(0.27 D 过矫),在逆规散光眼中,TCA 顶点/区测量的屈光性散光最小子午误差(0.07 D 欠矫)。在整个样本中,没有一种测量方法能使超过 43.75%的眼在散光大小的绝对误差小于 0.5 D。优化后的散光值使有此误差的眼的比例增加到 57.81%,与 Barrett 计算器和 Abulafia-Koch 计算器相比无差异。
与 KA 相比,TCA 改善了散光 IOL 的计算;然而,优化角膜散光测量可获得更准确的结果。