Department of Chemistry, University of California, Irvine, 1102 Natural Sciences 2, Irvine, CA, 92697, USA.
Nanovea, 6 Morgan Ste 156, Irvine, CA, 92618, USA.
Angew Chem Int Ed Engl. 2017 Dec 4;56(49):15575-15579. doi: 10.1002/anie.201707587. Epub 2017 Nov 7.
Mechanical gradients are often employed in nature to prevent biological materials from damage by creating a smooth transition from strong to weak that dissipates large forces. Synthetic mimics of these natural structures are highly desired to improve distribution of stresses at interfaces and reduce contact deformation in manmade materials. Current synthetic gradient materials commonly suffer from non-continuous transitions, relatively small gradients in mechanical properties, and difficult syntheses. Inspired by the polychaete worm jaw, we report a novel approach to generate stiffness gradients in polymeric materials via incorporation of dynamic monodentate metal-ligand crosslinks. Through spatial control of metal ion content, we created a continuous mechanical gradient that spans over a 200-fold difference in stiffness, approaching the mechanical contrast observed in biological gradient materials.
机械梯度在自然界中经常被用来防止生物材料受到损坏,通过从强到弱的平稳过渡来耗散大的力。这些天然结构的合成模拟物是非常需要的,以改善界面处的应力分布并减少人造材料的接触变形。目前的合成梯度材料通常存在非连续的转变、机械性能的梯度较小以及合成困难等问题。受多毛环节蠕虫下颚的启发,我们报告了一种通过引入动态单齿金属配体交联来在聚合物材料中产生刚度梯度的新方法。通过空间控制金属离子含量,我们创建了一个连续的机械梯度,其刚度差异超过 200 倍,接近在生物梯度材料中观察到的机械对比度。