Yu Lei, Pan Panpan, Zhang Yu, Zhang Yi, Wan Li, Cheng Xiaowei, Deng Yonghui
Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, iChEM, Fudan University, Shanghai, 200433, China.
School of Materials Science and Energy Engineering, Foshan University, Jiangwan First Road, Foshan, 528000, Guangdong, China.
Small. 2019 Apr;15(14):e1805465. doi: 10.1002/smll.201805465. Epub 2019 Mar 8.
Using interfacial reaction systems for biphasic catalytic reactions is attracting more and more attention due to their simple reaction process and low environmental pollution. Yolk-shell structured materials have broad applications in biomedicine, catalysis, and environmental remediation owing to their open channels and large space for guest molecules. Conventional methods to obtain yolk-shell mesoporous materials rely on costly and complex hard-template strategies. In this study, a mild and convenient nonsacrificial self-template strategy is developed to construct yolk-shell magnetic periodic mesoporous organosilica (YS-mPMO) particles by using the unique swelling-deswelling property of low-crosslinking density resorcinol formaldehyde (RF). The obtained YS-mPMO microspheres possess an amphiphilic outer shell, high surface area (393 m g ), uniform mesopores (2.58 nm), a tunable middle hollow space (50-156 nm), and high superparamagnetism (34.4-37.1 emu g ). By tuning the synthesis conditions, heterojunction structured yolk-shell Fe O @RF@void@PMO particles with different morphologies can be produced. Owing to the amphipathy of PMO framworks, the YS-mPMO particles show great emulsion stabilization ability and recyclability under a magnetic field. YS-mPMO microspheres with immobilized Au nanoparticles (≈3 nm) act as both solid emulsifier for dispersing styrene (St) in water and interface catalysts for selective conversion of St into styrene oxide with a high selectivity of 86%, and yields of over 97%.
由于其简单的反应过程和低环境污染,利用界面反应体系进行双相催化反应正受到越来越多的关注。蛋黄壳结构材料因其开放的通道和为客体分子提供的大空间,在生物医学、催化和环境修复等领域有着广泛的应用。传统的制备蛋黄壳介孔材料的方法依赖于昂贵且复杂的硬模板策略。在本研究中,开发了一种温和便捷的非牺牲性自模板策略,利用低交联密度间苯二酚甲醛(RF)独特的溶胀-消溶胀性质来构建蛋黄壳磁性周期性介孔有机硅(YS-mPMO)颗粒。所制备的YS-mPMO微球具有两亲性外壳、高比表面积(393 m²/g)、均匀的介孔(2.58 nm)、可调节的中间中空空间(50 - 156 nm)以及高超顺磁性(34.4 - 37.1 emu/g)。通过调节合成条件,可以制备出具有不同形貌的异质结结构蛋黄壳Fe₃O₄@RF@void@PMO颗粒。由于PMO骨架的两亲性,YS-mPMO颗粒在磁场下表现出优异的乳液稳定能力和可回收性。负载有金纳米颗粒(≈3 nm)的YS-mPMO微球既作为将苯乙烯(St)分散在水中的固体乳化剂,又作为将St选择性转化为环氧苯乙烷的界面催化剂,选择性高达86%,产率超过97%。