Ikeno Hidekazu, Mizoguchi Teruyasu
Nanoscience and Nanotechnology Research Center, Research Organization for the 21st Century, Osaka Prefecture University, 1-2 Gakuen-cho, Naka-ku, Sakai Osaka 599-8570, Japan.
JST, PRESTO, 4-1-8 Hon-cho, Kawaguchi, Saitama 332-0012, Japan.
Microscopy (Oxf). 2017 Oct 1;66(5):305-327. doi: 10.1093/jmicro/dfx033.
The electron energy loss near edge structures (ELNES) appearing in an electron energy loss spectrum obtained through transmission electron microscopy (TEM) have the potential to unravel atomic and electronic structures with sub-nano meter resolution. For this reason, TEM-ELNES has become one of the most powerful analytical methods in materials research. On the other hand, theoretical calculations are indispensable in interpreting the ELNES spectrum. Here, the basics and applications of one-particle, two-particle and multi-particle ELNES calculations are reviewed. A key point for the ELNES calculation is the proper introduction of the core-hole effect. Some applications of one-particle ELNES calculations to huge systems of more than 1000 atoms, and complex systems, such as liquids, are reported. In the two-particle calculations, the importance of the correct treatment of the excitonic interaction is demonstrated in calculating the low-energy ELNES, for example at the Li-K edge. In addition, an unusually strong excitonic interactions in the O-K edge of perovskite oxides is identified. The multi-particle calculations are necessary to reproduce the multiplet structures appearing at the transition metal L2,3-edges and rare-earth M4,5-edges. Applications to dilute magnetic semiconductors and Li-ion battery materials are presented. Furthermore, beyond the 'conventional' ELNES calculations, theoretical calculations of electron/X-ray magnetic circular dichroism (MCD) and the vibrational information in ELNES, are reported.
通过透射电子显微镜(TEM)获得的电子能量损失谱中出现的电子能量损失近边结构(ELNES),有潜力以亚纳米分辨率揭示原子和电子结构。因此,TEM-ELNES已成为材料研究中最强大的分析方法之一。另一方面,理论计算在解释ELNES谱时不可或缺。在此,对单粒子、双粒子和多粒子ELNES计算的基础及应用进行综述。ELNES计算的一个关键点是正确引入芯孔效应。报道了单粒子ELNES计算在超过1000个原子的巨大体系以及诸如液体等复杂体系中的一些应用。在双粒子计算中,例如在Li-K边计算低能ELNES时,证明了正确处理激子相互作用的重要性。此外,还确定了钙钛矿氧化物O-K边存在异常强的激子相互作用。多粒子计算对于重现过渡金属L2,3边和稀土M4,5边出现的多重结构是必要的。展示了其在稀磁半导体和锂离子电池材料中的应用。此外,除了“传统”的ELNES计算,还报道了电子/ X射线磁圆二色性(MCD)以及ELNES中的振动信息的理论计算。