Suppr超能文献

急救医学文献检索过滤器:专为临床医生和学者优化。

Paramedic literature search filters: optimised for clinicians and academics.

机构信息

Department of Community Emergency Health and Paramedic Practice, Monash University, Melbourne, Australia.

Emergency & Trauma Centre, The Alfred Hospital, Melbourne, Australia.

出版信息

BMC Med Inform Decis Mak. 2017 Oct 11;17(1):146. doi: 10.1186/s12911-017-0544-z.

Abstract

BACKGROUND

Search filters aid clinicians and academics to accurately locate literature. Despite this, there is no search filter or Medical Subject Headings (MeSH) term pertaining to paramedics. Therefore, the aim of this study was to create two filters to meet to different needs of paramedic clinicians and academics.

METHODS

We created a gold standard from a reference set, which we measured against single terms and search filters. The words and phrases used stemmed from selective exclusion of terms from the previously published Prehospital Search Filter 2.0 as well as a Delphi session with an expert panel of paramedic researchers. Independent authors deemed articles paramedic-relevant or not following an agreed definition. We measured sensitivity, specificity, accuracy and number needed to read (NNR).

RESULTS

We located 2102 articles of which 431 (20.5%) related to paramedics. The performance of single terms was on average of high specificity (97.1% (Standard Deviation 7.4%), but of poor sensitivity (12.0%, SD 18.7%). The NNR ranged from 1 to 8.6. The sensitivity-maximising search filter yielded 98.4% sensitivity, with a specificity of 74.3% and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and thus a NNR of 1.48.

CONCLUSIONS

We have created the first two paramedic specific search filters, one optimised for sensitivity and one optimised for specificity. The sensitivity-maximising search filter yielded 98.4% sensitivity, and a NNR of 2. The specificity-maximising filter achieved 88.3% in specificity, which only lowered the sensitivity to 94.7%, and a NNR of 1.48. A paramedic MeSH term is needed.

摘要

背景

搜索过滤器可帮助临床医生和学者准确地定位文献。尽管如此,目前还没有针对护理人员的搜索过滤器或医学主题词(MeSH)术语。因此,本研究的目的是创建两个过滤器,以满足护理人员临床医生和学者的不同需求。

方法

我们从参考集创建了一个黄金标准,并将其与单一术语和搜索过滤器进行了比较。使用的单词和短语源自先前发表的《院前搜索过滤器 2.0》中术语的选择性排除,以及与护理人员研究专家小组进行的 Delphi 会议。独立作者根据商定的定义判断文章是否与护理人员相关。我们测量了敏感性、特异性、准确性和需要阅读的数量(NNR)。

结果

我们共定位到 2102 篇文章,其中 431 篇(20.5%)与护理人员相关。单项术语的性能平均具有较高的特异性(97.1%(标准偏差为 7.4%),但敏感性较低(12.0%,标准偏差为 18.7%)。NNR 范围从 1 到 8.6。灵敏度最大化搜索过滤器的灵敏度为 98.4%,特异性为 74.3%,NNR 为 2。特异性最大化过滤器的特异性为 88.3%,仅将敏感性降低至 94.7%,因此 NNR 为 1.48。

结论

我们已经创建了第一个两个护理人员特定的搜索过滤器,一个优化了灵敏度,一个优化了特异性。灵敏度最大化搜索过滤器的灵敏度为 98.4%,NNR 为 2。特异性最大化过滤器的特异性为 88.3%,仅将敏感性降低至 94.7%,NNR 为 1.48。需要一个护理人员 MeSH 术语。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60b7/5637081/7f48aa762ef6/12911_2017_544_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验