Suppr超能文献

年轻和高龄产妇的人卵母细胞对 IVM 的不同分子反应。

Differing molecular response of young and advanced maternal age human oocytes to IVM.

机构信息

Department of Animal Science, University of California Davis, One Shields Avenue, Davis, CA 95616, USA.

Colorado Center for Reproductive Medicine, 10290 Ridgegate Circle, Lone Tree, CO 80124, USA.

出版信息

Hum Reprod. 2017 Nov 1;32(11):2199-2208. doi: 10.1093/humrep/dex284.

Abstract

STUDY QUESTION

What effect does maternal age have on the human oocyte's molecular response to in vitro oocyte maturation?

SUMMARY ANSWER

Although polyadenylated transcript abundance is similar between young and advanced maternal age (AMA) germinal vesicle (GV) oocytes, metaphase II (MII) oocytes exhibit a divergent transcriptome resulting from a differential response to in vitro oocyte maturation.

WHAT IS KNOWN ALREADY

Microarray studies considering maternal age or maturation stage have shown that either of these factors will affect oocyte polyadenylated transcript abundance in human oocytes. However, studies considering both human oocyte age and multiple stages simultaneously are limited to a single study that examined transcript levels for two genes by qPCR. Thus, polyadenylated RNA sequencing (RNA-Seq) could provide novel insight into age-associated aberrations in gene expression in GV and MII oocytes.

STUDY DESIGN, SIZE, DURATION: The effect of maternal age (longitudinal analysis) on polyadenylated transcript abundance at different stages was analyzed by examining single GV and single in vitro matured MII oocytes derived from five young (YNG; < 30 years; average age 26.8; range 20-29) and five advanced maternal age (AMA; ≥40 years; average age 41.6 years; range 40-43 years) patients. Thus, a total of 10 YNG (5 GV and 5 MII) and 10 AMA (5 GV and 5 MII) oocytes were individually processed for RNA-Seq analysis.

PARTICIPANTS/MATERIALS, SETTINGS, METHODS: Patients undergoing infertility treatment at the Colorado Center for Reproductive Medicine (Lone Tree, CO, USA) underwent ovarian stimulation with FSH and received hCG for final follicular maturation prior to ultrasound guided oocyte retrieval. Unused GV oocytes obtained at retrieval were donated for transcriptome analysis. Single oocytes were stored (at -80°C in PicoPure RNA Extraction Buffer; Thermo Fisher Scientific, USA) immediately upon verification of immaturity or after undergoing in vitro oocyte maturation (24 h incubation), representing GV and MII samples, respectively. After isolating RNA and generating single oocyte RNA-Seq libraries (SMARTer Ultra Low Input RNA HV kit; Clontech, USA), Illumina sequencing (100 bp paired-end reads on HiSeq 2500) and bioinformatics analysis (CLC Genomics Workbench, DESeq2, weighted gene correlation network analysis (WGCNA), Ingenuity Pathway Analysis) were performed.

MAIN RESULTS AND THE ROLE OF CHANCE

A total of 12 770 genes were determined to be expressed in human oocytes (reads per kilobase per million mapped reads (RPKM) > 0.4 in at least three of five replicates for a minimum of one sample type). Differential gene expression analysis between YNG and AMA oocytes (within stage) identified 1 and 255 genes that significantly differed (adjusted P < 0.1 and log2 fold change >1) in polyadenylated transcript abundance for GV and MII oocytes, respectively. These genes included CDK1, NLRP5 and PRDX1, which have been reported to affect oocyte developmental potential. Despite the similarity in transcript abundance between GV oocytes irrespective of age, divergent expression patterns emerged during oocyte maturation. These age-specific differentially expressed genes were enriched (FDR < 0.05) for functions and pathways associated with mitochondria, cell cycle and cytoskeleton. Gene modules generated by WGCNA (based on gene expression) and patient traits related to oocyte quality (e.g. age and blastocyst development) were correlated (P < 0.05) and enriched (FDR < 0.05) for functions and pathways associated with oocyte maturation.

LARGE SCALE DATA

Raw data from this study can be accessed through GSE95477.

LIMITATIONS, REASONS FOR CAUTION: The human oocytes used in the current study were obtained from patients with varying causes of infertility (e.g. decreased oocyte quality and oocyte quality-independent factors), possibly affecting oocyte gene expression. Oocytes in this study were retrieved at the GV stage following hCG administration and the MII oocytes were derived by IVM of patient oocytes. Although the approach has the benefit of identifying intrinsic differences between samples, it may not be completely representative of in vivo matured oocytes.

WIDER IMPLICATIONS OF THE FINDINGS

Transcriptome profiles of YNG and AMA oocytes, particularly at the MII stage, suggest that aberrant transcript abundance may contribute to the age-associated decline in fertility.

STUDY FUNDING/COMPETING INTEREST(S): J.M.R. was supported by an Austin Eugene Lyons Fellowship awarded by the University of California, Davis. The Eunice Kennedy Shriver National Institute of Child Health and Human Development of the National Institutes of Health (awarded to P.J.R.; R01HD070044) and the Fertility Laboratories of Colorado partly supported the research presented in this manuscript.

摘要

研究问题

母体年龄如何影响人类卵母细胞对体外卵母细胞成熟的分子反应?

总结答案

虽然年轻和高龄(AMA)卵母细胞的生发泡期(GV)卵母细胞中的多聚腺苷酸化转录本丰度相似,但 MII 期卵母细胞表现出不同的转录组,这是由于对体外卵母细胞成熟的不同反应所致。

已知情况

考虑母体年龄或成熟阶段的微阵列研究表明,这两个因素中的任何一个都会影响人类卵母细胞中的多聚腺苷酸化转录本丰度。然而,同时考虑人类卵母细胞年龄和多个阶段的研究仅限于一项研究,该研究通过 qPCR 检查了两个基因的转录水平。因此,多聚腺苷酸化 RNA 测序(RNA-Seq)可以为 GV 和 MII 卵母细胞中与年龄相关的基因表达异常提供新的见解。

研究设计、规模、持续时间:通过检查来自五个年轻(YNG;<30 岁;平均年龄 26.8 岁;范围 20-29 岁)和五个高龄(AMA;≥40 岁;平均年龄 41.6 岁;范围 40-43 岁)患者的单个 GV 和单个体外成熟的 MII 卵母细胞,分析了母体年龄(纵向分析)对不同阶段多聚腺苷酸化转录本丰度的影响。因此,总共处理了 10 个 YNG(5 个 GV 和 5 个 MII)和 10 个 AMA(5 个 GV 和 5 个 MII)卵母细胞进行 RNA-Seq 分析。

参与者/材料、设置、方法:在美国科罗拉多生殖医学中心(Lone Tree,CO,USA)接受不孕症治疗的患者接受 FSH 刺激,并在超声引导下取卵前接受 hCG 进行最终卵泡成熟。从取回的未使用的 GV 卵母细胞中获得用于转录组分析的捐赠。单个卵母细胞在验证不成熟或进行体外卵母细胞成熟(24 小时孵育)后立即储存(在 -80°C 下储存在 PicoPure RNA 提取缓冲液中;Thermo Fisher Scientific,USA),分别代表 GV 和 MII 样本。在分离 RNA 并生成单个卵母细胞 RNA-Seq 文库(SMARTer Ultra Low Input RNA HV 试剂盒;Clontech,USA)后,进行了 Illumina 测序(100 bp 配对末端读取在 HiSeq 2500 上)和生物信息学分析(CLC Genomics Workbench、DESeq2、加权基因相关性网络分析(WGCNA)、Ingenuity Pathway Analysis)。

主要结果和机会的作用

确定了 12770 个基因在人类卵母细胞中表达(在至少三个重复样本中的每一个中,每千碱基每百万映射读取的读数(RPKM)>0.4,至少有一个样本类型)。YNG 和 AMA 卵母细胞(在同一阶段)之间的差异基因表达分析确定了 1 个和 255 个基因在 GV 和 MII 卵母细胞中多聚腺苷酸化转录本丰度显著不同(调整后的 P<0.1,对数倍数变化>1)。这些基因包括 CDK1、NLRP5 和 PRDX1,它们已被报道影响卵母细胞的发育潜力。尽管 GV 卵母细胞的转录本丰度在年龄上相似,但在卵母细胞成熟过程中出现了不同的表达模式。这些年龄特异性差异表达基因与线粒体、细胞周期和细胞骨架相关的功能和途径有关(FDR<0.05)。基于基因表达生成的 WGCNA 基因模块和与卵母细胞质量相关的患者特征(例如年龄和囊胚发育)相关(P<0.05),并与与卵母细胞成熟相关的功能和途径有关(FDR<0.05)。

大数据

本研究的原始数据可通过 GSE95477 访问。

局限性、谨慎的原因:本研究中使用的人类卵母细胞是从患有不同原因不孕症的患者中获得的(例如卵母细胞质量下降和卵母细胞质量无关因素),这可能会影响卵母细胞的基因表达。本研究中的卵母细胞是在 hCG 给药后在 GV 期收获的,并且 MII 期卵母细胞是通过患者卵母细胞的 IVM 衍生的。虽然这种方法具有识别样本内在差异的优点,但它可能不完全代表体内成熟的卵母细胞。

研究结果的更广泛意义

YNG 和 AMA 卵母细胞的转录组谱,特别是在 MII 阶段,表明异常转录本丰度可能导致与年龄相关的生育能力下降。

研究资金/利益冲突:J.M.R. 得到了加州大学戴维斯分校 Austin Eugene Lyons 奖学金的支持。美国国立卫生研究院的尤尼斯肯尼迪施莱佛国立儿童健康与人类发育研究所(授予 P.J.R.;R01HD070044)和科罗拉多生育实验室部分支持了本手稿中提出的研究。

相似文献

引用本文的文献

本文引用的文献

3
Translation in the mammalian oocyte in space and time.哺乳动物卵母细胞中翻译的时空情况。
Cell Tissue Res. 2016 Jan;363(1):69-84. doi: 10.1007/s00441-015-2269-6. Epub 2015 Sep 4.
9
Metabolic activation of CaMKII by coenzyme A.辅酶 A 对 CaMKII 的代谢激活作用。
Mol Cell. 2013 Nov 7;52(3):325-39. doi: 10.1016/j.molcel.2013.08.043. Epub 2013 Oct 3.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验