Hedde Per Niklas, Malacrida Leonel, Ahrar Siavash, Siryaporn Albert, Gratton Enrico
Laboratory for Fluorescence Dynamics, Department of Biomedical Engineering, University of California Irvine, Irvine, CA, USA.
Área de Investigación Respiratoria, Departamento de Fisiopatología, Hospital de Clínicas, Facultad de Medicina, Universidad de la República, Uruguay.
Biomed Opt Express. 2017 Aug 1;8(9):3918-3937. doi: 10.1364/BOE.8.003918. eCollection 2017 Sep 1.
Previously described selective plane illumination microscopy techniques typically offset ease of use and sample handling for maximum imaging performance or . Also, to reduce cost and complexity while maximizing flexibility, it is highly desirable to implement light sheet microscopy such that it can be added to a standard research microscope instead of setting up a dedicated system. We devised a new approach termed sideSPIM that provides uncompromised imaging performance and easy sample handling while, at the same time, offering new applications of plane illumination towards fluidics and high throughput 3D imaging of multiple specimen. Based on an inverted epifluorescence microscope, all of the previous functionality is maintained and modifications to the existing system are kept to a minimum. At the same time, our implementation is able to take full advantage of the speed of the employed sCMOS camera and piezo stage to record data at rates of up to 5 stacks/s. Additionally, sample handling is compatible with established methods and switching magnification to change the field of view from single cells to whole organisms does not require labor intensive adjustments of the system.
先前描述的选择性平面照明显微镜技术通常为了实现最大成像性能而牺牲了易用性和样品处理便利性。此外,为了在最大化灵活性的同时降低成本和复杂性,非常希望实现光片显微镜,使其能够添加到标准研究显微镜上,而不是设置一个专用系统。我们设计了一种名为sideSPIM的新方法,它在提供无损成像性能和简便样品处理的同时,还为流体学和多个样本的高通量3D成像提供了平面照明的新应用。基于倒置落射荧光显微镜,保留了所有先前的功能,并且对现有系统的修改保持在最低限度。同时,我们的实现能够充分利用所采用的sCMOS相机和压电平台的速度,以高达每秒5个堆栈的速率记录数据。此外,样品处理与既定方法兼容,并且切换放大倍数以将视野从单细胞改变为整个生物体不需要对系统进行费力的调整。