文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用单细胞转录组数据剖析细胞间通讯诱导的串扰。

Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.

作者信息

Hou Jiawen, Zhao Wei, Nie Qing

机构信息

Department of Mathematics, University of California Irvine, 92697 Irvine, CA, USA.

The NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, 92697 Irvine, CA, USA.

出版信息

bioRxiv. 2025 Jun 3:2025.05.31.657197. doi: 10.1101/2025.05.31.657197.


DOI:10.1101/2025.05.31.657197
PMID:40501904
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12157450/
Abstract

During cell-cell communication (CCC), pathways activated by different ligand-receptor pairs may have crosstalk with each other. While multiple methods have been developed to infer CCC networks and their downstream response using single-cell RNA-seq data (scRNA-seq), the potential crosstalk between pathways connecting CCC with its downstream targets has been ignored. Here we introduce a machine learning-based method SigXTalk to analyze the crosstalk using scRNA-seq data by quantifying signal fidelity and specificity, two critical quantities measuring the effect of crosstalk. Specifically, a hypergraph learning method is used to encode the higher-order relations among receptors, transcription factors and target genes within regulatory pathways. Benchmarking of SigXTalk using simulation data shows the effectiveness, robustness, and accuracy in identifying key shared molecules among crosstalk pathways and their roles in transferring shared CCC information. Analysis of disease data shows SigXTalk's capability in identifying crucial signals, targets, regulatory networks, and CCC patterns that distinguish different disease conditions. Applications to the data with multiple time points reveals SigXTalk's capability in tracking the evolution of crosstalk pathways over time. Together our studies provide a systematic analysis of CCC-induced regulatory networks from the perspective of crosstalk between pathways.

摘要

在细胞间通讯(CCC)过程中,由不同配体-受体对激活的信号通路可能会相互发生串扰。虽然已经开发了多种方法,利用单细胞RNA测序数据(scRNA-seq)来推断CCC网络及其下游反应,但连接CCC与其下游靶点的信号通路之间的潜在串扰却一直被忽视。在此,我们引入一种基于机器学习的方法SigXTalk,通过量化信号保真度和特异性这两个衡量串扰效应的关键指标,利用scRNA-seq数据来分析串扰。具体而言,采用超图学习方法对调控通路中受体、转录因子和靶基因之间的高阶关系进行编码。使用模拟数据对SigXTalk进行基准测试,结果表明该方法在识别串扰通路之间的关键共享分子及其在传递共享CCC信息中的作用方面具有有效性、稳健性和准确性。对疾病数据的分析表明,SigXTalk能够识别区分不同疾病状态的关键信号、靶点、调控网络和CCC模式。将其应用于多个时间点的数据,揭示了SigXTalk跟踪串扰通路随时间演变的能力。我们的研究共同从通路间串扰的角度,对CCC诱导的调控网络进行了系统分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/b841c4b2fe0f/nihpp-2025.05.31.657197v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/2b99eb2c66c1/nihpp-2025.05.31.657197v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/4e328cf0ed27/nihpp-2025.05.31.657197v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/a71dbc958d77/nihpp-2025.05.31.657197v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/c9134ae776f0/nihpp-2025.05.31.657197v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/d0884a0fd415/nihpp-2025.05.31.657197v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/12fca04f2c9a/nihpp-2025.05.31.657197v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/b841c4b2fe0f/nihpp-2025.05.31.657197v1-f0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/2b99eb2c66c1/nihpp-2025.05.31.657197v1-f0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/4e328cf0ed27/nihpp-2025.05.31.657197v1-f0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/a71dbc958d77/nihpp-2025.05.31.657197v1-f0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/c9134ae776f0/nihpp-2025.05.31.657197v1-f0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/d0884a0fd415/nihpp-2025.05.31.657197v1-f0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/12fca04f2c9a/nihpp-2025.05.31.657197v1-f0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c6/12157450/b841c4b2fe0f/nihpp-2025.05.31.657197v1-f0007.jpg

相似文献

[1]
Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.

bioRxiv. 2025-6-3

[2]
Dissecting crosstalk induced by cell-cell communication using single-cell transcriptomic data.

Nat Commun. 2025-7-1

[3]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

[4]
Falls prevention interventions for community-dwelling older adults: systematic review and meta-analysis of benefits, harms, and patient values and preferences.

Syst Rev. 2024-11-26

[5]
Management of urinary stones by experts in stone disease (ESD 2025).

Arch Ital Urol Androl. 2025-6-30

[6]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[7]
A New Measure of Quantified Social Health Is Associated With Levels of Discomfort, Capability, and Mental and General Health Among Patients Seeking Musculoskeletal Specialty Care.

Clin Orthop Relat Res. 2025-4-1

[8]
Comparison of Two Modern Survival Prediction Tools, SORG-MLA and METSSS, in Patients With Symptomatic Long-bone Metastases Who Underwent Local Treatment With Surgery Followed by Radiotherapy and With Radiotherapy Alone.

Clin Orthop Relat Res. 2024-12-1

[9]
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.

JBI Database System Rev Implement Rep. 2016-4

[10]
Factors that influence parents' and informal caregivers' views and practices regarding routine childhood vaccination: a qualitative evidence synthesis.

Cochrane Database Syst Rev. 2021-10-27

本文引用的文献

[1]
PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications.

Front Cell Neurosci. 2024-5-23

[2]
Inferring gene regulatory networks from single-cell multiome data using atlas-scale external data.

Nat Biotechnol. 2025-2

[3]
Detecting and dissecting signaling crosstalk via the multilayer network integration of signaling and regulatory interactions.

Nucleic Acids Res. 2024-1-11

[4]
Sctensor detects many-to-many cell-cell interactions from single cell RNA-sequencing data.

BMC Bioinformatics. 2023-11-7

[5]
scMHNN: a novel hypergraph neural network for integrative analysis of single-cell epigenomic, transcriptomic and proteomic data.

Brief Bioinform. 2023-9-22

[6]
Robust discovery of gene regulatory networks from single-cell gene expression data by Causal Inference Using Composition of Transactions.

Brief Bioinform. 2023-9-22

[7]
Gene regulatory network reconstruction: harnessing the power of single-cell multi-omic data.

NPJ Syst Biol Appl. 2023-10-19

[8]
ESICCC as a systematic computational framework for evaluation, selection, and integration of cell-cell communication inference methods.

Genome Res. 2023-10

[9]
Decoding functional cell-cell communication events by multi-view graph learning on spatial transcriptomics.

Brief Bioinform. 2023-9-22

[10]
Molecular mechanisms of COVID-19-induced pulmonary fibrosis and epithelial-mesenchymal transition.

Front Pharmacol. 2023-8-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索