Bayin N Sumru, Frenster Joshua D, Sen Rajeev, Si Sheng, Modrek Aram S, Galifianakis Nataliya, Dolgalev Igor, Ortenzi Valerio, Illa-Bochaca Irineu, Khahera Anadjeet, Serrano Jonathan, Chiriboga Luis, Zagzag David, Golfinos John G, Doyle Werner, Tsirigos Aristotelis, Heguy Adriana, Chesler Mitch, Barcellos-Hoff Mary Helen, Snuderl Matija, Placantonakis Dimitris G
Department of Neurosurgery, NYU School of Medicine, New York, NY, USA.
Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, USA.
Oncotarget. 2017 May 23;8(39):64932-64953. doi: 10.18632/oncotarget.18117. eCollection 2017 Sep 12.
Glioblastoma (GBM) stem cells (GSCs) reside in both hypoxic and vascular microenvironments within tumors. The molecular mechanisms that allow GSCs to occupy such contrasting niches are not understood. We used patient-derived GBM cultures to identify GSC subtypes with differential activation of Notch signaling, which co-exist in tumors but occupy distinct niches and match their metabolism accordingly. Multipotent GSCs with Notch pathway activation reside in perivascular niches, and are unable to entrain anaerobic glycolysis during hypoxia. In contrast, most CD133-expressing GSCs do not depend on canonical Notch signaling, populate tumors regardless of local vascularity and selectively utilize anaerobic glycolysis to expand in hypoxia. Ectopic activation of Notch signaling in CD133-expressing GSCs is sufficient to suppress anaerobic glycolysis and resistance to hypoxia. These findings demonstrate a novel role for Notch signaling in regulating GSC metabolism and suggest intratumoral GSC heterogeneity ensures metabolic adaptations to support tumor growth in diverse tumor microenvironments.
胶质母细胞瘤(GBM)干细胞(GSCs)存在于肿瘤内的缺氧和血管微环境中。目前尚不清楚使GSCs占据如此截然不同的生态位的分子机制。我们使用患者来源的GBM培养物来鉴定具有不同Notch信号激活的GSC亚型,这些亚型共存于肿瘤中,但占据不同的生态位并相应地匹配其代谢。Notch途径激活的多能GSCs存在于血管周围生态位中,并且在缺氧期间无法进行无氧糖酵解。相比之下,大多数表达CD133的GSCs不依赖于经典的Notch信号,无论局部血管情况如何都能在肿瘤中增殖,并在缺氧时选择性地利用无氧糖酵解来扩张。在表达CD133的GSCs中Notch信号的异位激活足以抑制无氧糖酵解和对缺氧的抗性。这些发现证明了Notch信号在调节GSC代谢中的新作用,并表明肿瘤内GSC异质性确保了代谢适应,以支持在不同肿瘤微环境中的肿瘤生长。