Suppr超能文献

使用稳健的参数估计方法来识别微生物组动态。

Identification of microbiota dynamics using robust parameter estimation methods.

机构信息

Virginia Tech, Department of Mathematics, 225 Stanger St, Blacksburg, VA, United States; Virginia Tech, Computational Modeling and Data Analytics, Academy of Integrated Science, Blacksburg, VA, United States.

Virginia Tech, Department of Mathematics, 225 Stanger St, Blacksburg, VA, United States.

出版信息

Math Biosci. 2017 Dec;294:71-84. doi: 10.1016/j.mbs.2017.09.009. Epub 2017 Oct 10.

Abstract

The compositions of in-host microbial communities (microbiota) play a significant role in host health, and a better understanding of the microbiota's role in a host's transition from health to disease or vice versa could lead to novel medical treatments. One of the first steps toward this understanding is modeling interaction dynamics of the microbiota, which can be exceedingly challenging given the complexity of the dynamics and difficulties in collecting sufficient data. Methods such as principal differential analysis, dynamic flux estimation, and others have been developed to overcome these challenges. Despite their advantages, these methods are still vastly underutilized in fields such as mathematical biology, and one potential reason for this is their sophisticated implementation. While this paper focuses on applying principal differential analysis to microbiota data, we also provide comprehensive details regarding the derivation and numerics of this method and include a functional implementation for readers' benefit. For further validation of these methods, we demonstrate the feasibility of principal differential analysis using simulation studies and then apply the method to intestinal and vaginal microbiota data. In working with these data, we capture experimentally confirmed dynamics while also revealing potential new insights into the system dynamics.

摘要

宿主微生物群落(微生物组)的组成在宿主健康中起着重要作用,更好地了解微生物组在宿主从健康向疾病或反之过渡中的作用可能会导致新的医疗方法。为此,首先要对微生物组的相互作用动态进行建模,鉴于其动态的复杂性和收集足够数据的困难,这是极具挑战性的。已经开发了主微分分析、动态通量估计等方法来克服这些挑战。尽管这些方法具有优势,但在数学生物学等领域仍未得到广泛应用,其中一个潜在原因是它们的实现方式复杂。虽然本文侧重于将主微分分析应用于微生物组数据,但我们还提供了有关该方法的推导和数值的全面详细信息,并为读者提供了功能实现。为了进一步验证这些方法的可行性,我们使用模拟研究展示了主微分分析的可行性,然后将该方法应用于肠道和阴道微生物组数据。在处理这些数据时,我们捕捉到了经过实验证实的动态,同时也揭示了系统动态的潜在新见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6c2/5714695/79a6e3886efc/nihms914851f1.jpg

相似文献

6
Universality of human microbial dynamics.人类微生物动态变化的普遍性。
Nature. 2016 Jun 9;534(7606):259-62. doi: 10.1038/nature18301.
7
Compositional Lotka-Volterra describes microbial dynamics in the simplex.组合洛特卡-沃尔泰拉模型描述了单纯形中的微生物动态。
PLoS Comput Biol. 2020 May 29;16(5):e1007917. doi: 10.1371/journal.pcbi.1007917. eCollection 2020 May.
8
Microbiota's No Wasting Policy.微生物组的不浪费政策。
Cell. 2015 Nov 19;163(5):1057-1058. doi: 10.1016/j.cell.2015.10.077.

本文引用的文献

6
Differential abundance analysis for microbial marker-gene surveys.微生物标记基因调查的差异丰度分析。
Nat Methods. 2013 Dec;10(12):1200-2. doi: 10.1038/nmeth.2658. Epub 2013 Sep 29.
10
Inferring correlation networks from genomic survey data.从基因组普查数据推断关联网络。
PLoS Comput Biol. 2012;8(9):e1002687. doi: 10.1371/journal.pcbi.1002687. Epub 2012 Sep 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验