Simon Julianna C, Dunmire Barbrina, Bailey Michael R, Sorensen Mathew D
Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington, 1013 NE 40 St., Seattle, WA 98105 USA.
Department of Mechanical Engineering, University of Washington, Stevens Way, Box 352600, Seattle, WA 98195 USA.
J Space Saf Eng. 2016 Sep;3(2):50-57. doi: 10.1016/S2468-8967(16)30018-0. Epub 2017 Jan 25.
Bone demineralization, dehydration, and stasis put astronauts at an increased risk of forming kidney stones in space. The incidence of kidney stones and the potential for a mission-critical event are expected to rise as expeditions become longer and immediate transport to Earth becomes more problematic. At the University of Washington, we are developing an ultrasound-based stone management system to detect stones with S-mode ultrasound imaging, break stones with burst wave lithotripsy (BWL), and reposition stones with ultrasonic propulsion (UP) on Earth and in space. This review discusses the development and current state of these technologies, as well as integration on the flexible ultrasound system sponsored by NASA and the National Space Biomedical Research Institute.
骨质脱矿、脱水和尿液潴留使宇航员在太空中形成肾结石的风险增加。随着太空任务时间延长以及返回地球的即时运输变得更加困难,肾结石的发病率和关键任务事件发生的可能性预计将会上升。在华盛顿大学,我们正在开发一种基于超声的结石管理系统,该系统利用S模式超声成像检测结石,通过脉冲波碎石术(BWL)击碎结石,并在地球上和太空中利用超声推进(UP)重新定位结石。本文综述了这些技术的发展和现状,以及由美国国家航空航天局(NASA)和国家空间生物医学研究所资助的柔性超声系统的集成情况。