Suppr超能文献

用于放射组学风险建模的生存时间数据的机器学习方法的比较研究。

A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling.

作者信息

Leger Stefan, Zwanenburg Alex, Pilz Karoline, Lohaus Fabian, Linge Annett, Zöphel Klaus, Kotzerke Jörg, Schreiber Andreas, Tinhofer Inge, Budach Volker, Sak Ali, Stuschke Martin, Balermpas Panagiotis, Rödel Claus, Ganswindt Ute, Belka Claus, Pigorsch Steffi, Combs Stephanie E, Mönnich David, Zips Daniel, Krause Mechthild, Baumann Michael, Troost Esther G C, Löck Steffen, Richter Christian

机构信息

OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany.

German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) partner site Dresden, Dresden, Germany.

出版信息

Sci Rep. 2017 Oct 16;7(1):13206. doi: 10.1038/s41598-017-13448-3.

Abstract

UNLABELLED

Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g.

, MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.

摘要

未标注

放射组学应用机器学习算法处理定量成像数据,以表征肿瘤表型并预测临床结果。对于放射组学风险模型的开发,有多种不同的算法可供选择,尚不清楚哪种算法能给出最佳结果。因此,我们通过一致性指数(C指数)评估了11种机器学习算法与12种特征选择方法相结合的性能,以预测头颈部鳞状细胞癌患者的局部区域肿瘤控制(LRC)和总生存期。所考虑的算法能够处理连续的事件发生时间生存数据。在一个多中心队列(213例患者)上进行特征选择和模型构建,并使用一个独立队列(80例患者)进行验证。我们发现了几种机器学习算法和特征选择方法的组合,它们能取得相似的结果,例如,MSR-RF:C指数 = 0.71,BT-COX:C指数 = 0.70,与Spearman特征选择相结合。使用性能最佳的模型,将患者分为复发低风险和高风险组。在验证队列中,两组之间的LRC存在显著差异。基于所呈现的分析,我们确定了一组算法,在未来的放射组学研究中应考虑这些算法,以开发针对事件发生时间终点的稳定且与临床相关的预测模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3a1d/5643429/7da366486a37/41598_2017_13448_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验