Suppr超能文献

基于可重复且可解释的机器学习的放射组学分析用于多形性胶质母细胞瘤的总生存预测

Reproducible and Interpretable Machine Learning-Based Radiomic Analysis for Overall Survival Prediction in Glioblastoma Multiforme.

作者信息

Duman Abdulkerim, Sun Xianfang, Thomas Solly, Powell James R, Spezi Emiliano

机构信息

School of Engineering, Cardiff University, Cardiff CF24 3AA, UK.

School of Computer Science and Informatics, Cardiff University, Cardiff CF24 4AG, UK.

出版信息

Cancers (Basel). 2024 Sep 30;16(19):3351. doi: 10.3390/cancers16193351.

Abstract

PURPOSE

To develop and validate an MRI-based radiomic model for predicting overall survival (OS) in patients diagnosed with glioblastoma multiforme (GBM), utilizing a retrospective dataset from multiple institutions.

MATERIALS AND METHODS

Pre-treatment MRI images of 289 GBM patients were collected. From each patient's tumor volume, 660 radiomic features (RFs) were extracted and subjected to robustness analysis. The initial prognostic model with minimum RFs was subsequently enhanced by including clinical variables. The final clinical-radiomic model was derived through repeated three-fold cross-validation on the training dataset. Performance evaluation included assessment of concordance index (C-Index), integrated area under curve (iAUC) alongside patient stratification into low and high-risk groups for overall survival (OS).

RESULTS

The final prognostic model, which has the highest level of interpretability, utilized primary gross tumor volume (GTV) and one MRI modality (T2-FLAIR) as a predictor and integrated the age variable with two independent, robust RFs, achieving moderately good discriminatory performance (C-Index [95% confidence interval]: 0.69 [0.62-0.75]) with significant patient stratification ( = 7 × 10) on the validation cohort. Furthermore, the trained model exhibited the highest iAUC at 11 months (0.81) in the literature.

CONCLUSION

We identified and validated a clinical-radiomic model for stratification of patients into low and high-risk groups based on OS in patients with GBM using a multicenter retrospective dataset. Future work will focus on the use of deep learning-based features, with recently standardized convolutional filters on OS tasks.

摘要

目的

利用来自多个机构的回顾性数据集,开发并验证一种基于磁共振成像(MRI)的放射组学模型,用于预测多形性胶质母细胞瘤(GBM)患者的总生存期(OS)。

材料与方法

收集了289例GBM患者的治疗前MRI图像。从每位患者的肿瘤体积中提取660个放射组学特征(RFs),并进行稳健性分析。随后,通过纳入临床变量来增强具有最少RFs的初始预后模型。最终的临床放射组学模型是通过在训练数据集上重复进行三倍交叉验证得出的。性能评估包括一致性指数(C指数)评估、曲线下综合面积(iAUC)评估,以及将患者分为总生存期(OS)的低风险组和高风险组。

结果

最终的预后模型具有最高水平的可解释性,它将原发性肿瘤总体积(GTV)和一种MRI模态(T2-FLAIR)作为预测指标,并将年龄变量与两个独立的、稳健的RFs相结合,在验证队列中实现了中等良好的区分性能(C指数[95%置信区间]:0.69[0.62-0.75]),且患者分层显著(=7×10)。此外,在文献中,训练后的模型在11个月时表现出最高的iAUC(0.81)。

结论

我们利用多中心回顾性数据集,识别并验证了一种基于OS将GBM患者分为低风险组和高风险组的临床放射组学模型。未来的工作将集中于使用基于深度学习的特征,以及最近在OS任务上标准化的卷积滤波器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fbdc/11476262/312659765bf6/cancers-16-03351-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验