Suppr超能文献

局部晚期头颈部鳞状细胞癌放射组学风险建模中肿瘤子体积的综合分析

Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC.

作者信息

Leger Stefan, Zwanenburg Alex, Leger Karoline, Lohaus Fabian, Linge Annett, Schreiber Andreas, Kalinauskaite Goda, Tinhofer Inge, Guberina Nika, Guberina Maja, Balermpas Panagiotis, von der Grün Jens, Ganswindt Ute, Belka Claus, Peeken Jan C, Combs Stephanie E, Boeke Simon, Zips Daniel, Richter Christian, Krause Mechthild, Baumann Michael, Troost Esther G C, Löck Steffen

机构信息

OncoRay-National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf, 01307 Dresden, Germany.

German Cancer Research Center (DKFZ), Heidelberg and German Cancer Consortium (DKTK) Partner Site, 01307 Dresden, Germany.

出版信息

Cancers (Basel). 2020 Oct 19;12(10):3047. doi: 10.3390/cancers12103047.

Abstract

Imaging features for radiomic analyses are commonly calculated from the entire gross tumour volume (GTV ). However, tumours are biologically complex and the consideration of different tumour regions in radiomic models may lead to an improved outcome prediction. Therefore, we investigated the prognostic value of radiomic analyses based on different tumour sub-volumes using computed tomography imaging of patients with locally advanced head and neck squamous cell carcinoma. The GTV  was cropped by different margins to define the rim and the corresponding core sub-volumes of the tumour. Subsequently, the best performing tumour rim sub-volume was extended into surrounding tissue with different margins. Radiomic risk models were developed and validated using a retrospective cohort consisting of 291 patients in one of the six Partner Sites of the German Cancer Consortium Radiation Oncology Group treated between 2005 and 2013. The validation concordance index (C-index) averaged over all applied learning algorithms and feature selection methods using the GTVentire achieved a moderate prognostic performance for loco-regional tumour control (C-index: 0.61 ± 0.04 (mean ± std)). The models based on the 5 mm tumour rim and on the 3 mm extended rim sub-volume showed higher median performances (C-index: 0.65 ± 0.02 and 0.64 ± 0.05, respectively), while models based on the corresponding tumour core volumes performed less (C-index: 0.59 ± 0.01). The difference in C-index between the 5 mm tumour rim and the corresponding core volume showed a statistical trend ( = 0.10). After additional prospective validation, the consideration of tumour sub-volumes may be a promising way to improve prognostic radiomic risk models.

摘要

放射组学分析的影像特征通常从整个大体肿瘤体积(GTV)中计算得出。然而,肿瘤具有生物学复杂性,在放射组学模型中考虑不同的肿瘤区域可能会改善预后预测。因此,我们利用局部晚期头颈部鳞状细胞癌患者的计算机断层扫描成像,研究了基于不同肿瘤子体积的放射组学分析的预后价值。通过不同的边界裁剪GTV来定义肿瘤的边缘和相应的核心子体积。随后,将表现最佳的肿瘤边缘子体积以不同的边界扩展到周围组织中。使用德国癌症联盟放射肿瘤学组六个合作站点之一在2005年至2013年期间治疗的291例患者组成的回顾性队列,开发并验证了放射组学风险模型。使用GTV整体,在所有应用的学习算法和特征选择方法上平均得到的验证一致性指数(C指数)在局部区域肿瘤控制方面达到了中等的预后性能(C指数:0.61±0.04(平均值±标准差))。基于5毫米肿瘤边缘和3毫米扩展边缘子体积的模型显示出更高的中位性能(C指数分别为:0.65±0.02和0.64±0.05),而基于相应肿瘤核心体积的模型表现较差(C指数:0.59±0.01)。5毫米肿瘤边缘与相应核心体积之间的C指数差异显示出统计学趋势(=0.10)。经过额外的前瞻性验证后,考虑肿瘤子体积可能是改善预后放射组学风险模型的一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9d34/7589463/05cbc76e3ab4/cancers-12-03047-g0A1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验