Suppr超能文献

深度特征迁移学习结合传统特征可预测肺腺癌患者的生存率。

Deep Feature Transfer Learning in Combination with Traditional Features Predicts Survival Among Patients with Lung Adenocarcinoma.

作者信息

Paul Rahul, Hawkins Samuel H, Balagurunathan Yoganand, Schabath Matthew B, Gillies Robert J, Hall Lawrence O, Goldgof Dmitry B

机构信息

Department of Computer Science and Engineering, University of South Florida, Tampa, Florida.

Department of Cancer Imaging and Metabolism, H. Lee Moffitt Cancer Center & Research Institute, Tampa, Florida.

出版信息

Tomography. 2016 Dec;2(4):388-395. doi: 10.18383/j.tom.2016.00211.

Abstract

Lung cancer is the most common cause of cancer-related deaths in the USA. It can be detected and diagnosed using computed tomography images. For an automated classifier, identifying predictive features from medical images is a key concern. Deep feature extraction using pretrained convolutional neural networks (CNNs) has recently been successfully applied in some image domains. Here, we applied a pretrained CNN to extract deep features from 40 computed tomography images, with contrast, of non-small cell adenocarcinoma lung cancer, and combined deep features with traditional image features and trained classifiers to predict short- and long-term survivors. We experimented with several pretrained CNNs and several feature selection strategies. The best previously reported accuracy when using traditional quantitative features was 77.5% (area under the curve [AUC], 0.712), which was achieved by a decision tree classifier. The best reported accuracy from transfer learning and deep features was 77.5% (AUC, 0.713) using a decision tree classifier. When extracted deep neural network features were combined with traditional quantitative features, we obtained an accuracy of 90% (AUC, 0.935) with the 5 best post-rectified linear unit features extracted from a vgg-f pretrained CNN and the 5 best traditional features. The best results were achieved with the symmetric uncertainty feature ranking algorithm followed by a random forests classifier.

摘要

肺癌是美国癌症相关死亡的最常见原因。它可以通过计算机断层扫描图像进行检测和诊断。对于自动分类器而言,从医学图像中识别预测特征是一个关键问题。最近,使用预训练卷积神经网络(CNN)进行深度特征提取已成功应用于一些图像领域。在此,我们应用预训练的CNN从40张非小细胞腺癌肺癌的增强计算机断层扫描图像中提取深度特征,并将深度特征与传统图像特征相结合,训练分类器以预测短期和长期存活者。我们试验了几种预训练的CNN和几种特征选择策略。使用传统定量特征时,先前报道的最佳准确率为77.5%(曲线下面积[AUC],0.712),这是由决策树分类器实现的。使用决策树分类器,迁移学习和深度特征报道的最佳准确率为77.5%(AUC,0.713)。当将提取的深度神经网络特征与传统定量特征相结合时,我们使用从vgg-f预训练CNN中提取的5个最佳修正线性单元后特征和5个最佳传统特征,获得了90%的准确率(AUC,0.935)。使用对称不确定性特征排序算法和随机森林分类器取得了最佳结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/92ea/6037927/1b6d15dbfcc2/tom0041600720001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验