Brief Bioinform. 2019 Jul 19;20(4):1167-1180. doi: 10.1093/bib/bbx096.
The analysis of the dynamic behaviour of genome-scale models of metabolism (GEMs) currently presents considerable challenges because of the difficulties of simulating such large and complex networks. Bacterial GEMs can comprise about 5000 reactions and metabolites, and encode a huge variety of growth conditions; such models cannot be used without sophisticated tool support. This article is intended to aid modellers, both specialist and non-specialist in computerized methods, to identify and apply a suitable combination of tools for the dynamic behaviour analysis of large-scale metabolic designs. We describe a methodology and related workflow based on publicly available tools to profile and analyse whole-genome-scale biochemical models. We use an efficient approximative stochastic simulation method to overcome problems associated with the dynamic simulation of GEMs. In addition, we apply simulative model checking using temporal logic property libraries, clustering and data analysis, over time series of reaction rates and metabolite concentrations. We extend this to consider the evolution of reaction-oriented properties of subnets over time, including dead subnets and functional subsystems. This enables the generation of abstract views of the behaviour of these models, which can be large-up to whole genome in size-and therefore impractical to analyse informally by eye. We demonstrate our methodology by applying it to a reduced model of the whole-genome metabolism of Escherichia coli K-12 under different growth conditions. The overall context of our work is in the area of model-based design methods for metabolic engineering and synthetic biology.
目前,由于模拟如此庞大而复杂的网络存在困难,对基因组规模代谢模型(GEM)的动态行为进行分析仍然具有相当大的挑战性。细菌 GEM 可以包含约 5000 个反应和代谢物,并编码各种生长条件;如果没有复杂的工具支持,这样的模型是无法使用的。本文旨在帮助建模者,包括计算机方法方面的专家和非专家,识别和应用合适的工具组合,以分析大规模代谢设计的动态行为。我们描述了一种基于公开可用工具的方法和相关工作流程,用于分析和分析全基因组规模的生化模型。我们使用有效的近似随机模拟方法来克服与 GEM 动态模拟相关的问题。此外,我们还应用了基于时间逻辑属性库、聚类和数据分析的模拟模型检查,用于反应速率和代谢物浓度的时间序列。我们将其扩展到考虑随时间变化的反应导向子网的特性的演变,包括死子网和功能子系统。这使得能够生成这些模型行为的抽象视图,这些模型可能非常大,达到整个基因组的大小,因此无法通过肉眼非正式地进行分析。我们通过将其应用于不同生长条件下大肠杆菌 K-12 的全基因组代谢的简化模型来演示我们的方法。我们工作的整体背景是代谢工程和合成生物学的基于模型的设计方法领域。