Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands.
Department of Bioinformatics - BiGCaT, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, Maastricht, The Netherlands.
PLoS Comput Biol. 2021 Nov 8;17(11):e1009522. doi: 10.1371/journal.pcbi.1009522. eCollection 2021 Nov.
Genome-scale metabolic models (GEMs) are comprehensive knowledge bases of cellular metabolism and serve as mathematical tools for studying biological phenotypes and metabolic states or conditions in various organisms and cell types. Given the sheer size and complexity of human metabolism, selecting parameters for existing analysis methods such as metabolic objective functions and model constraints is not straightforward in human GEMs. In particular, comparing several conditions in large GEMs to identify condition- or disease-specific metabolic features is challenging. In this study, we showcase a scalable, model-driven approach for an in-depth investigation and comparison of metabolic states in large GEMs which enables identifying the underlying functional differences. Using a combination of flux space sampling and network analysis, our approach enables extraction and visualisation of metabolically distinct network modules. Importantly, it does not rely on known or assumed objective functions. We apply this novel approach to extract the biochemical differences in adipocytes arising due to unlimited vs blocked uptake of branched-chain amino acids (BCAAs, considered as biomarkers in obesity) using a human adipocyte GEM (iAdipocytes1809). The biological significance of our approach is corroborated by literature reports confirming our identified metabolic processes (TCA cycle and Fatty acid metabolism) to be functionally related to BCAA metabolism. Additionally, our analysis predicts a specific altered uptake and secretion profile indicating a compensation for the unavailability of BCAAs. Taken together, our approach facilitates determining functional differences between any metabolic conditions of interest by offering a versatile platform for analysing and comparing flux spaces of large metabolic networks.
基因组规模代谢模型(GEMs)是细胞代谢的综合知识库,是研究各种生物体和细胞类型的生物学表型和代谢状态或条件的数学工具。鉴于人类代谢的庞大规模和复杂性,在人类 GEM 中选择现有的分析方法(如代谢目标函数和模型约束)的参数并不简单。特别是,在大型 GEM 中比较几种条件以确定特定于条件或疾病的代谢特征具有挑战性。在这项研究中,我们展示了一种可扩展的、基于模型的方法,用于深入研究和比较大型 GEM 中的代谢状态,从而能够识别潜在的功能差异。我们的方法结合通量空间采样和网络分析,能够提取和可视化代谢上不同的网络模块。重要的是,它不依赖于已知或假设的目标函数。我们应用这种新方法来提取由于支链氨基酸(BCAAs,被认为是肥胖的生物标志物)的摄取不受限制与摄取受阻而在脂肪细胞中引起的生化差异,使用人类脂肪细胞 GEM(iAdipocytes1809)。我们的方法的生物学意义得到了文献报道的证实,这些报道证实了我们确定的代谢过程(TCA 循环和脂肪酸代谢)与 BCAA 代谢功能相关。此外,我们的分析预测了特定的改变的摄取和分泌谱,表明对 BCAAs 不可用的补偿。总之,我们的方法通过提供分析和比较大型代谢网络通量空间的通用平台,促进确定任何感兴趣的代谢条件之间的功能差异。