Case Western Reserve University, 10900 Euclid Ave, Cleveland, OH, USA.
Yale University School of Medicine, 333 Cedar St, New Haven, 06510, CT, USA.
Sci Rep. 2017 Oct 19;7(1):13543. doi: 10.1038/s41598-017-13773-7.
Identification of patients with early stage non-small cell lung cancer (NSCLC) with high risk of recurrence could help identify patients who would receive additional benefit from adjuvant therapy. In this work, we present a computational histomorphometric image classifier using nuclear orientation, texture, shape, and tumor architecture to predict disease recurrence in early stage NSCLC from digitized H&E tissue microarray (TMA) slides. Using a retrospective cohort of early stage NSCLC patients (Cohort #1, n = 70), we constructed a supervised classification model involving the most predictive features associated with disease recurrence. This model was then validated on two independent sets of early stage NSCLC patients, Cohort #2 (n = 119) and Cohort #3 (n = 116). The model yielded an accuracy of 81% for prediction of recurrence in the training Cohort #1, 82% and 75% in the validation Cohorts #2 and #3 respectively. A multivariable Cox proportional hazard model of Cohort #2, incorporating gender and traditional prognostic variables such as nodal status and stage indicated that the computer extracted histomorphometric score was an independent prognostic factor (hazard ratio = 20.81, 95% CI: 6.42-67.52, P < 0.001).
识别早期非小细胞肺癌(NSCLC)中复发风险较高的患者有助于确定哪些患者将从辅助治疗中获益更多。在这项工作中,我们提出了一种基于核取向、纹理、形状和肿瘤结构的计算组织形态计量图像分类器,用于从数字化 H&E 组织微阵列(TMA)切片预测早期 NSCLC 的疾病复发。使用早期 NSCLC 患者的回顾性队列(队列 #1,n = 70),我们构建了一个涉及与疾病复发最相关的预测特征的监督分类模型。然后,我们在两个独立的早期 NSCLC 患者队列(队列 #2,n = 119)和队列 #3(n = 116)上验证了该模型。该模型在训练队列 #1 中预测复发的准确率为 81%,在验证队列 #2 和 #3 中分别为 82%和 75%。队列 #2 的多变量 Cox 比例风险模型,纳入了性别和传统预后变量,如淋巴结状态和分期,表明计算机提取的组织形态计量评分是一个独立的预后因素(风险比=20.81,95%CI:6.42-67.52,P<0.001)。