Swingle Danielle, Epstein Leah, Aymon Ramisha, Isiorho Eta A, Abzalimov Rinat R, Favaro Denize C, Gardner Kevin H
Structural Biology Initiative, CUNY Advanced Science Research Center, New York, NY 10031.
Ph.D. Program in Biochemistry, The Graduate Center - City University of New York, New York, NY 10016.
bioRxiv. 2024 Nov 25:2024.11.04.621962. doi: 10.1101/2024.11.04.621962.
The general stress response (GSR) protects bacteria from a wide range of stressors. In , GSR activation is coordinated by HWE/HisKA2 family histidine kinases (HKs), which can exhibit non-canonical structure and function. For example, while most light-oxygen-voltage sensor-containing HKs are light activated dimers, the RT-HK has inverted "dark on, light off" signaling logic with a tunable monomer/dimer equilibrium. Here, we further investigate these atypical behaviors of RT-HK and characterize its downstream signaling network. Using hydrogen-deuterium exchange mass spectrometry, we find that RT-HK uses a signal transduction mechanism similar to light-activated systems, despite its inverted logic. Mutagenesis reveals that RT-HK autophosphorylates , with changes to the Jα helix linking sensor and kinase domains affecting autophosphorylation levels. Exploring downstream effects of RT-HK, we identified two GSR genetic regions, each encoding a copy of the central regulator PhyR. measurements of phosphotransfer from RT-HK to the two putative PhyRs revealed that RT-HK signals only to one, and does so at an increased intensity in the dark, consistent with its reversed logic. X-ray crystal structures of both PhyRs revealed a substantial shift within the receiver domain of one, suggesting a basis for RT-HK specificity. We probed further down the pathway using nuclear magnetic resonance to determine that the single NepR homolog interacts with both unphosphorylated PhyRs, and this interaction is decoupled from activation in one PhyR. This work expands our understanding of HWE/HisKA2 family signal transduction, revealing marked variations from signaling mechanisms previously identified in other GSR networks.
一般应激反应(GSR)可保护细菌免受多种应激源的影响。在[具体情况未提及]中,GSR的激活由HWE/HisKA2家族组氨酸激酶(HKs)协调,这些激酶可表现出非典型的结构和功能。例如,虽然大多数含光氧电压传感器的HKs是光激活二聚体,但RT-HK具有相反的“暗开,光关”信号逻辑,且单体/二聚体平衡可调。在此,我们进一步研究RT-HK的这些非典型行为,并表征其下游信号网络。利用氢氘交换质谱法,我们发现RT-HK尽管逻辑相反,但使用的信号转导机制与光激活系统相似。诱变研究表明,RT-HK可进行自身磷酸化,连接传感器和激酶结构域的Jα螺旋的变化会影响自身磷酸化水平。在探索RT-HK的下游效应时,我们鉴定出两个GSR遗传区域,每个区域都编码中央调节因子PhyR的一个拷贝。对从RT-HK到两个假定的PhyR的磷酸转移测量表明,RT-HK仅向其中一个发出信号,并且在黑暗中信号强度增加,这与其相反的逻辑一致。两个PhyR的X射线晶体结构显示其中一个的接收结构域内有显著位移,这表明了RT-HK特异性的基础。我们使用核磁共振进一步探究该信号通路,以确定单个NepR同源物与两个未磷酸化的PhyR相互作用,并且这种相互作用在一个PhyR中与激活解耦。这项工作扩展了我们对HWE/HisKA2家族信号转导的理解,揭示了与先前在其他GSR网络中确定的信号机制的显著差异。