Dept. of Electronics Engineering, Universitat Politècnica de Catalunya, Jordi Girona, 1-3, edif. C4, 08034 Barcelona, Catalunya, Spain.
Instituto Politecnico Nacional, ESIME Culhuacan, Av. Santa Ana N 1000, Coyoacan, 04260, Distrito Federal, Mexico.
Neural Netw. 2018 Jan;97:28-45. doi: 10.1016/j.neunet.2017.09.011. Epub 2017 Oct 5.
Spiking Neural Networks (SNN) for Versatile Applications (SNAVA) simulation platform is a scalable and programmable parallel architecture that supports real-time, large-scale, multi-model SNN computation. This parallel architecture is implemented in modern Field-Programmable Gate Arrays (FPGAs) devices to provide high performance execution and flexibility to support large-scale SNN models. Flexibility is defined in terms of programmability, which allows easy synapse and neuron implementation. This has been achieved by using a special-purpose Processing Elements (PEs) for computing SNNs, and analyzing and customizing the instruction set according to the processing needs to achieve maximum performance with minimum resources. The parallel architecture is interfaced with customized Graphical User Interfaces (GUIs) to configure the SNN's connectivity, to compile the neuron-synapse model and to monitor SNN's activity. Our contribution intends to provide a tool that allows to prototype SNNs faster than on CPU/GPU architectures but significantly cheaper than fabricating a customized neuromorphic chip. This could be potentially valuable to the computational neuroscience and neuromorphic engineering communities.
spikes 神经网络 (SNN) 用于通用应用 (SNAVA) 仿真平台是一种可扩展和可编程的并行架构,支持实时、大规模、多模型 SNN 计算。这种并行架构是在现代现场可编程门阵列 (FPGA) 设备中实现的,以提供高性能执行和灵活性,支持大规模 SNN 模型。灵活性是指可编程性,这允许轻松实现突触和神经元。这是通过使用专门的处理元素 (PE) 来计算 SNN 来实现的,并根据处理需求分析和自定义指令集,以用最小的资源实现最大的性能。并行架构与定制图形用户界面 (GUI) 接口,以配置 SNN 的连接,编译神经元-突触模型,并监测 SNN 的活动。我们的贡献旨在提供一种工具,使原型 SNN 的速度比 CPU/GPU 架构更快,但成本明显低于制造定制的神经形态芯片。这对于计算神经科学和神经形态工程社区可能具有重要价值。