Vallejo-Mancero Bernardo, Madrenas Jordi, Zapata Mireya
Department of Electronic Engineering, Universitat Politècnica de Catalunya, Barcelona, Spain.
Centro de Investigación en Mecatrónica y Sistemas Interactivos-MIST, Universidad Indoamérica, Quito, Ecuador.
Front Neurosci. 2024 Aug 6;18:1425861. doi: 10.3389/fnins.2024.1425861. eCollection 2024.
Recent advancements in neuromorphic computing have led to the development of hardware architectures inspired by Spiking Neural Networks (SNNs) to emulate the efficiency and parallel processing capabilities of the human brain. This work focuses on testing the HEENS architecture, specifically designed for high parallel processing and biological realism in SNN emulation, implemented on a ZYNQ family FPGA. The study applies this architecture to the classification of digits using the well-known MNIST database. The image resolutions were adjusted to match HEENS' processing capacity. Results were compared with existing work, demonstrating HEENS' performance comparable to other solutions. This study highlights the importance of balancing accuracy and efficiency in the execution of applications. HEENS offers a flexible solution for SNN emulation, allowing for the implementation of programmable neural and synaptic models. It encourages the exploration of novel algorithms and network architectures, providing an alternative for real-time processing with efficient energy consumption.
神经形态计算的最新进展促使了受脉冲神经网络(SNN)启发的硬件架构的发展,以模拟人类大脑的效率和并行处理能力。这项工作专注于测试HEENS架构,该架构专为SNN仿真中的高并行处理和生物逼真度而设计,并在ZYNQ系列FPGA上实现。该研究将此架构应用于使用著名的MNIST数据库进行数字分类。调整图像分辨率以匹配HEENS的处理能力。将结果与现有工作进行比较,证明HEENS的性能与其他解决方案相当。这项研究强调了在应用程序执行中平衡准确性和效率的重要性。HEENS为SNN仿真提供了一种灵活的解决方案,允许实现可编程的神经和突触模型。它鼓励探索新颖的算法和网络架构,为高效能耗的实时处理提供了一种替代方案。