National Magnetic Resonance Facility at Madison and BioMagResBank, Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.
Anal Chem. 2017 Nov 21;89(22):12201-12208. doi: 10.1021/acs.analchem.7b02884. Epub 2017 Nov 7.
The exceptionally rich information content of nuclear magnetic resonance (NMR) spectra is routinely used to identify and characterize molecules and molecular interactions in a wide range of applications, including clinical biomarker discovery, drug discovery, environmental chemistry, and metabolomics. The set of peak positions and intensities from a reference NMR spectrum generally serves as the identifying signature for a compound. Reference spectra normally are collected under specific conditions of pH, temperature, and magnetic field strength, because changes in conditions can distort the identifying signatures of compounds. A spin system matrix that parametrizes chemical shifts and coupling constants among spins provides a much richer feature set for a compound than a spectral signature based on peak positions and intensities. Spin system matrices expand the applicability of NMR spectral libraries beyond the specific conditions under which data were collected. In addition to being able to simulate spectra at any field strength, spin parameters can be adjusted to systematically explore alterations in chemical shift patterns due to variations in other experimental conditions, such as compound concentration, pH, or temperature. We present methodology and software for efficient interactive optimization of spin parameters against experimental 1D-H NMR spectra of small molecules. We have used the software to generate spin system matrices for a set of key mammalian metabolites and are also using the software to parametrize spectra of small molecules used in NMR-based ligand screening. The software, along with optimized spin system matrix data for a growing number of compounds, is available from http://gissmo.nmrfam.wisc.edu/ .
核磁共振(NMR)光谱具有极其丰富的信息内容,通常用于识别和表征广泛应用中的分子和分子相互作用,包括临床生物标志物发现、药物发现、环境化学和代谢组学。参考 NMR 光谱的峰位置和强度集通常用作化合物的识别特征。参考光谱通常在特定的 pH 值、温度和磁场强度条件下收集,因为条件的变化会扭曲化合物的识别特征。自旋系统矩阵参数化了自旋之间的化学位移和耦合常数,为化合物提供了比基于峰位置和强度的光谱特征更丰富的特征集。自旋系统矩阵扩展了 NMR 光谱库的适用性,超出了收集数据时的特定条件。除了能够在任何场强下模拟光谱外,自旋参数还可以进行调整,以系统地探索由于其他实验条件(如化合物浓度、pH 值或温度)的变化而导致的化学位移模式的变化。我们提出了一种针对小分子的 1D-H NMR 实验谱图进行自旋参数有效交互式优化的方法和软件。我们已经使用该软件生成了一组关键的哺乳动物代谢物的自旋系统矩阵,并且还在使用该软件对基于 NMR 的配体筛选中小分子的光谱进行参数化。该软件以及越来越多化合物的优化自旋系统矩阵数据可从 http://gissmo.nmrfam.wisc.edu/ 获得。