Suppr超能文献

用于代谢组学和小分子筛选应用的核磁共振波谱的自旋系统建模。

Spin System Modeling of Nuclear Magnetic Resonance Spectra for Applications in Metabolomics and Small Molecule Screening.

机构信息

National Magnetic Resonance Facility at Madison and BioMagResBank, Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53706, United States.

出版信息

Anal Chem. 2017 Nov 21;89(22):12201-12208. doi: 10.1021/acs.analchem.7b02884. Epub 2017 Nov 7.

Abstract

The exceptionally rich information content of nuclear magnetic resonance (NMR) spectra is routinely used to identify and characterize molecules and molecular interactions in a wide range of applications, including clinical biomarker discovery, drug discovery, environmental chemistry, and metabolomics. The set of peak positions and intensities from a reference NMR spectrum generally serves as the identifying signature for a compound. Reference spectra normally are collected under specific conditions of pH, temperature, and magnetic field strength, because changes in conditions can distort the identifying signatures of compounds. A spin system matrix that parametrizes chemical shifts and coupling constants among spins provides a much richer feature set for a compound than a spectral signature based on peak positions and intensities. Spin system matrices expand the applicability of NMR spectral libraries beyond the specific conditions under which data were collected. In addition to being able to simulate spectra at any field strength, spin parameters can be adjusted to systematically explore alterations in chemical shift patterns due to variations in other experimental conditions, such as compound concentration, pH, or temperature. We present methodology and software for efficient interactive optimization of spin parameters against experimental 1D-H NMR spectra of small molecules. We have used the software to generate spin system matrices for a set of key mammalian metabolites and are also using the software to parametrize spectra of small molecules used in NMR-based ligand screening. The software, along with optimized spin system matrix data for a growing number of compounds, is available from http://gissmo.nmrfam.wisc.edu/ .

摘要

核磁共振(NMR)光谱具有极其丰富的信息内容,通常用于识别和表征广泛应用中的分子和分子相互作用,包括临床生物标志物发现、药物发现、环境化学和代谢组学。参考 NMR 光谱的峰位置和强度集通常用作化合物的识别特征。参考光谱通常在特定的 pH 值、温度和磁场强度条件下收集,因为条件的变化会扭曲化合物的识别特征。自旋系统矩阵参数化了自旋之间的化学位移和耦合常数,为化合物提供了比基于峰位置和强度的光谱特征更丰富的特征集。自旋系统矩阵扩展了 NMR 光谱库的适用性,超出了收集数据时的特定条件。除了能够在任何场强下模拟光谱外,自旋参数还可以进行调整,以系统地探索由于其他实验条件(如化合物浓度、pH 值或温度)的变化而导致的化学位移模式的变化。我们提出了一种针对小分子的 1D-H NMR 实验谱图进行自旋参数有效交互式优化的方法和软件。我们已经使用该软件生成了一组关键的哺乳动物代谢物的自旋系统矩阵,并且还在使用该软件对基于 NMR 的配体筛选中小分子的光谱进行参数化。该软件以及越来越多化合物的优化自旋系统矩阵数据可从 http://gissmo.nmrfam.wisc.edu/ 获得。

相似文献

1
Spin System Modeling of Nuclear Magnetic Resonance Spectra for Applications in Metabolomics and Small Molecule Screening.
Anal Chem. 2017 Nov 21;89(22):12201-12208. doi: 10.1021/acs.analchem.7b02884. Epub 2017 Nov 7.
3
Applications of Parametrized NMR Spin Systems of Small Molecules.
Anal Chem. 2018 Sep 18;90(18):10646-10649. doi: 10.1021/acs.analchem.8b02660. Epub 2018 Aug 24.
4
MetaboMiner--semi-automated identification of metabolites from 2D NMR spectra of complex biofluids.
BMC Bioinformatics. 2008 Nov 28;9:507. doi: 10.1186/1471-2105-9-507.
5
New bioinformatics resources for metabolomics.
Pac Symp Biocomput. 2007:157-68.
6
NMRmix: A Tool for the Optimization of Compound Mixtures in 1D (1)H NMR Ligand Affinity Screens.
J Proteome Res. 2016 Apr 1;15(4):1360-8. doi: 10.1021/acs.jproteome.6b00121. Epub 2016 Mar 23.
7
Bayesian deconvolution and quantification of metabolites in complex 1D NMR spectra using BATMAN.
Nat Protoc. 2014;9(6):1416-27. doi: 10.1038/nprot.2014.090. Epub 2014 May 22.
8
rNMR: open source software for identifying and quantifying metabolites in NMR spectra.
Magn Reson Chem. 2009 Dec;47 Suppl 1(S1):S123-6. doi: 10.1002/mrc.2526.
9
MagMet: A fully automated web server for targeted nuclear magnetic resonance metabolomics of plasma and serum.
Magn Reson Chem. 2023 Dec;61(12):681-704. doi: 10.1002/mrc.5371. Epub 2023 Jun 2.
10
MetAssimulo: simulation of realistic NMR metabolic profiles.
BMC Bioinformatics. 2010 Oct 6;11:496. doi: 10.1186/1471-2105-11-496.

引用本文的文献

1
MetAssimulo 2.0: a web app for simulating realistic 1D and 2D metabolomic 1H NMR spectra.
Bioinformatics. 2025 Mar 4;41(3). doi: 10.1093/bioinformatics/btaf045.
2
Analysis of chi angle distributions in free amino acids via multiplet fitting of proton scalar couplings.
Magn Reson (Gott). 2024 Aug 19;5(2):103-120. doi: 10.5194/mr-5-103-2024. eCollection 2024.
3
COLMAR1d: A Web Server for Automated, Quantitative One-Dimensional Nuclear Magnetic Resonance-Based Metabolomics at Arbitrary Magnetic Fields.
Anal Chem. 2024 Oct 29;96(43):17174-17183. doi: 10.1021/acs.analchem.4c02688. Epub 2024 Oct 20.
4
Chemical Composition of Commercial Cannabis.
J Agric Food Chem. 2024 Jun 26;72(25):14099-14113. doi: 10.1021/acs.jafc.3c06616. Epub 2024 Jan 5.
5
Improving the accuracy of model-based quantitative nuclear magnetic resonance.
Magn Reson (Gott). 2020 Jul 2;1(2):141-153. doi: 10.5194/mr-1-141-2020. eCollection 2020.
6
Rapid prediction of full spin systems using uncertainty-aware machine learning.
Chem Sci. 2023 Sep 15;14(39):10902-10913. doi: 10.1039/d3sc01930f. eCollection 2023 Oct 11.
7
Label-free in vitro assays predict the potency of anti-disialoganglioside chimeric antigen receptor T-cell products.
Cytotherapy. 2023 Jun;25(6):670-682. doi: 10.1016/j.jcyt.2023.01.008. Epub 2023 Feb 26.
8
Primary Structure of Glycans by NMR Spectroscopy.
Chem Rev. 2023 Feb 8;123(3):1040-1102. doi: 10.1021/acs.chemrev.2c00580. Epub 2023 Jan 9.
9
Biological Magnetic Resonance Data Bank.
Nucleic Acids Res. 2023 Jan 6;51(D1):D368-D376. doi: 10.1093/nar/gkac1050.
10
Problems, principles and progress in computational annotation of NMR metabolomics data.
Metabolomics. 2022 Dec 5;18(12):102. doi: 10.1007/s11306-022-01962-z.

本文引用的文献

1
Unique identifiers for small molecules enable rigorous labeling of their atoms.
Sci Data. 2017 May 23;4:170073. doi: 10.1038/sdata.2017.73.
2
NMRbox: A Resource for Biomolecular NMR Computation.
Biophys J. 2017 Apr 25;112(8):1529-1534. doi: 10.1016/j.bpj.2017.03.011.
3
Increasing rigor in NMR-based metabolomics through validated and open source tools.
Curr Opin Biotechnol. 2017 Feb;43:56-61. doi: 10.1016/j.copbio.2016.08.005. Epub 2016 Sep 16.
4
Total lineshape analysis of high-resolution NMR spectra powered by simulated annealing.
J Magn Reson. 2016 Nov;272:10-19. doi: 10.1016/j.jmr.2016.08.012. Epub 2016 Aug 23.
5
The future of NMR-based metabolomics.
Curr Opin Biotechnol. 2017 Feb;43:34-40. doi: 10.1016/j.copbio.2016.08.001. Epub 2016 Aug 28.
7
Ligand-Orientation Based Fragment Selection in STD NMR Screening.
J Med Chem. 2015 Nov 12;58(21):8739-42. doi: 10.1021/acs.jmedchem.5b01114. Epub 2015 Oct 29.
9
PubChem Substance and Compound databases.
Nucleic Acids Res. 2016 Jan 4;44(D1):D1202-13. doi: 10.1093/nar/gkv951. Epub 2015 Sep 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验