Suppr超能文献

利用全脑连接模式解码与主体相关的认知状态。

Decoding subject-driven cognitive states with whole-brain connectivity patterns.

机构信息

Functional Imaging in Neuropsychiatric Disorders (FIND) Lab, Department of Neurology and Neurological Sciences, Stanford School of Medicine, Stanford, CA 94305, USA.

出版信息

Cereb Cortex. 2012 Jan;22(1):158-65. doi: 10.1093/cercor/bhr099. Epub 2011 May 26.

Abstract

Decoding specific cognitive states from brain activity constitutes a major goal of neuroscience. Previous studies of brain-state classification have focused largely on decoding brief, discrete events and have required the timing of these events to be known. To date, methods for decoding more continuous and purely subject-driven cognitive states have not been available. Here, we demonstrate that free-streaming subject-driven cognitive states can be decoded using a novel whole-brain functional connectivity analysis. Ninety functional regions of interest (ROIs) were defined across 14 large-scale resting-state brain networks to generate a 3960 cell matrix reflecting whole-brain connectivity. We trained a classifier to identify specific patterns of whole-brain connectivity as subjects rested quietly, remembered the events of their day, subtracted numbers, or (silently) sang lyrics. In a leave-one-out cross-validation, the classifier identified these 4 cognitive states with 84% accuracy. More critically, the classifier achieved 85% accuracy when identifying these states in a second, independent cohort of subjects. Classification accuracy remained high with imaging runs as short as 30-60 s. At all temporal intervals assessed, the 90 functionally defined ROIs outperformed a set of 112 commonly used structural ROIs in classifying cognitive states. This approach should enable decoding a myriad of subject-driven cognitive states from brief imaging data samples.

摘要

从大脑活动中解码特定的认知状态是神经科学的主要目标之一。先前的大脑状态分类研究主要集中在解码短暂、离散的事件上,并且需要知道这些事件的时间。迄今为止,还没有用于解码更连续和纯粹由主体驱动的认知状态的方法。在这里,我们展示了使用一种新的全脑功能连接分析可以解码自由流动的主体驱动的认知状态。在 14 个大规模静息态大脑网络中定义了 90 个功能感兴趣区 (ROI),以生成反映全脑连接的 3960 个细胞矩阵。我们训练了一个分类器来识别特定的全脑连接模式,这些模式是在受试者安静休息、回忆当天的事件、做减法或(无声地)唱歌时产生的。在一次留一法交叉验证中,该分类器以 84%的准确率识别了这 4 种认知状态。更重要的是,当在第二组独立的受试者中识别这些状态时,分类器的准确率达到了 85%。即使在成像运行时间短至 30-60 秒的情况下,分类准确率仍然很高。在评估的所有时间间隔内,这 90 个功能定义的 ROI 在分类认知状态方面的表现优于一组 112 个常用的结构 ROI。这种方法应该能够从短暂的成像数据样本中解码出无数的主体驱动的认知状态。

相似文献

引用本文的文献

本文引用的文献

1
Decoding brain states from fMRI connectivity graphs.从 fMRI 连通性图解码大脑状态。
Neuroimage. 2011 May 15;56(2):616-26. doi: 10.1016/j.neuroimage.2010.05.081. Epub 2010 Jun 9.
2
Decoding task-based attentional modulation during face categorization.解码面孔分类任务中的基于任务的注意力调节。
J Cogn Neurosci. 2011 May;23(5):1198-204. doi: 10.1162/jocn.2010.21503. Epub 2010 Apr 30.
3
Decoding individual episodic memory traces in the human hippocampus.在人类海马体中解码个体情景记忆痕迹。
Curr Biol. 2010 Mar 23;20(6):544-7. doi: 10.1016/j.cub.2010.01.053. Epub 2010 Mar 11.
4
Whole-brain anatomical networks: does the choice of nodes matter?全脑解剖网络:节点的选择重要吗?
Neuroimage. 2010 Apr 15;50(3):970-83. doi: 10.1016/j.neuroimage.2009.12.027. Epub 2009 Dec 24.
6
Decoding cognitive control in human parietal cortex.解码人类顶叶皮层中的认知控制
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17974-9. doi: 10.1073/pnas.0903593106. Epub 2009 Oct 5.
8
Correspondence of the brain's functional architecture during activation and rest.大脑在激活和静息状态下功能结构的对应关系。
Proc Natl Acad Sci U S A. 2009 Aug 4;106(31):13040-5. doi: 10.1073/pnas.0905267106. Epub 2009 Jul 20.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验