Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Catalonia, 08193, Spain.
Institut d'Electronique et des Systemes (IES), CNRS, Universite Montpellier 2 860 Rue de Saint Priest, Montpellier, 34095, France.
Nat Commun. 2017 Oct 24;8(1):1113. doi: 10.1038/s41467-017-01361-2.
While piezoelectric and ferroelectric materials play a key role in many everyday applications, there are still a number of open questions related to their physics. To enhance our understanding of piezoelectrics and ferroelectrics, nanoscale characterization is essential. Here, we develop an atomic force microscopy based mode that obtains a direct quantitative analysis of the piezoelectric coefficient d. We report nanoscale images of piezogenerated charge in a thick single crystal of periodically poled lithium niobate (PPLN), a bismuth ferrite (BiFO) thin film, and lead zirconate titanate (PZT) by applying a force and recording the current produced by these materials. The quantification of d coefficients for PPLN (14 ± 3 pC per N) and BFO (43 ± 6 pC per N) is in agreement with the values reported in the literature. Even stronger evidence of the reliability of the method is provided by an equally accurate measurement of the significantly larger d of PZT.
虽然压电和铁电材料在许多日常应用中起着关键作用,但它们的物理性质仍存在许多悬而未决的问题。为了增强我们对压电和铁电材料的理解,纳米级表征是必不可少的。在这里,我们开发了一种基于原子力显微镜的模式,该模式可以直接对压电系数 d 进行定量分析。我们通过施加力并记录这些材料产生的电流,报告了在周期性极化铌酸锂(PPLN)厚单晶、铋铁氧体(BiFO)薄膜和锆钛酸铅(PZT)中产生的压电能的纳米级图像。PPLN(每牛 14±3 pC)和 BFO(每牛 43±6 pC)的 d 系数的定量结果与文献报道的值一致。该方法同样准确地测量了 PZT 显著更大的 d,为其可靠性提供了更强有力的证据。