Sahyouni Ronald, Mahmoodi Amin, Chen Jefferson W, Chang David T, Moshtaghi Omid, Djalilian Hamid R, Lin Harrison W
Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head & Neck Surgery, University of California, 108 Medical Sciences E, Irvine, CA, 92697, USA.
Department of Biomedical Engineering, University of California, 108 Medical Sciences E, Irvine, CA, 92697, USA.
Neurosurg Rev. 2019 Jun;42(2):227-241. doi: 10.1007/s10143-017-0920-2. Epub 2017 Oct 23.
The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.
本研究的目的是探讨旨在改变或控制神经功能的成熟或有前景的生物电疗法的现状。我们展示了关于生物电技术的最新报告,这些技术在三个潜在部位与神经系统相互作用——(1)终末器官,(2)周围神经系统,以及(3)中枢神经系统——同时探讨实际和临床方面的考虑因素。在PubMed、IEEE和科学网数据库上进行了文献检索。对当前文献进行了综述,以研究神经假体接口的功能和组织形态学效应,重点关注终末器官、周围和中枢神经系统接口。生物电技术的创新在刺激不同神经纤维群体以激活离散肌肉方面提供了越来越高的选择性。电极阵列设计的重大进展集中在提高植入式神经假体的选择性、稳定性和功能性。将神经假体应用于麻痹神经甚至直接从中枢神经系统进行刺激或记录,在推动神经和组织生物电工程领域发展以及为临床护理做出贡献方面具有巨大潜力。尽管目前的物理治疗和手术治疗旨在恢复功能、结构或舒适度,但它们在实现美容或功能恢复方面存在重大局限性。相反,生物电技术的引入可能在神经功能缺损患者的功能恢复中发挥作用。