Suppr超能文献

与神经系统的交互:当前生物电技术综述

Interfacing with the nervous system: a review of current bioelectric technologies.

作者信息

Sahyouni Ronald, Mahmoodi Amin, Chen Jefferson W, Chang David T, Moshtaghi Omid, Djalilian Hamid R, Lin Harrison W

机构信息

Division of Neurotology and Skull Base Surgery, Department of Otolaryngology-Head & Neck Surgery, University of California, 108 Medical Sciences E, Irvine, CA, 92697, USA.

Department of Biomedical Engineering, University of California, 108 Medical Sciences E, Irvine, CA, 92697, USA.

出版信息

Neurosurg Rev. 2019 Jun;42(2):227-241. doi: 10.1007/s10143-017-0920-2. Epub 2017 Oct 23.

Abstract

The aim of this study is to discuss the state of the art with regard to established or promising bioelectric therapies meant to alter or control neurologic function. We present recent reports on bioelectric technologies that interface with the nervous system at three potential sites-(1) the end organ, (2) the peripheral nervous system, and (3) the central nervous system-while exploring practical and clinical considerations. A literature search was executed on PubMed, IEEE, and Web of Science databases. A review of the current literature was conducted to examine functional and histomorphological effects of neuroprosthetic interfaces with a focus on end-organ, peripheral, and central nervous system interfaces. Innovations in bioelectric technologies are providing increasing selectivity in stimulating distinct nerve fiber populations in order to activate discrete muscles. Significant advances in electrode array design focus on increasing selectivity, stability, and functionality of implantable neuroprosthetics. The application of neuroprosthetics to paretic nerves or even directly stimulating or recording from the central nervous system holds great potential in advancing the field of nerve and tissue bioelectric engineering and contributing to clinical care. Although current physiotherapeutic and surgical treatments seek to restore function, structure, or comfort, they bear significant limitations in enabling cosmetic or functional recovery. Instead, the introduction of bioelectric technology may play a role in the restoration of function in patients with neurologic deficits.

摘要

本研究的目的是探讨旨在改变或控制神经功能的成熟或有前景的生物电疗法的现状。我们展示了关于生物电技术的最新报告,这些技术在三个潜在部位与神经系统相互作用——(1)终末器官,(2)周围神经系统,以及(3)中枢神经系统——同时探讨实际和临床方面的考虑因素。在PubMed、IEEE和科学网数据库上进行了文献检索。对当前文献进行了综述,以研究神经假体接口的功能和组织形态学效应,重点关注终末器官、周围和中枢神经系统接口。生物电技术的创新在刺激不同神经纤维群体以激活离散肌肉方面提供了越来越高的选择性。电极阵列设计的重大进展集中在提高植入式神经假体的选择性、稳定性和功能性。将神经假体应用于麻痹神经甚至直接从中枢神经系统进行刺激或记录,在推动神经和组织生物电工程领域发展以及为临床护理做出贡献方面具有巨大潜力。尽管目前的物理治疗和手术治疗旨在恢复功能、结构或舒适度,但它们在实现美容或功能恢复方面存在重大局限性。相反,生物电技术的引入可能在神经功能缺损患者的功能恢复中发挥作用。

相似文献

1
Interfacing with the nervous system: a review of current bioelectric technologies.
Neurosurg Rev. 2019 Jun;42(2):227-241. doi: 10.1007/s10143-017-0920-2. Epub 2017 Oct 23.
2
Functional and Histological Effects of Chronic Neural Electrode Implantation.
Laryngoscope Investig Otolaryngol. 2017 Feb 6;2(2):80-93. doi: 10.1002/lio2.66. eCollection 2017 Apr.
3
Neural prostheses and biomedical microsystems in neurological rehabilitation.
Acta Neurochir Suppl. 2007;97(Pt 1):427-34. doi: 10.1007/978-3-211-33079-1_56.
4
Implantable neurotechnologies: a review of micro- and nanoelectrodes for neural recording.
Med Biol Eng Comput. 2016 Jan;54(1):23-44. doi: 10.1007/s11517-015-1430-4. Epub 2016 Jan 11.
5
Implantable microscale neural interfaces.
Biomed Microdevices. 2007 Dec;9(6):923-38. doi: 10.1007/s10544-006-9045-z.
6
Interfaces with the peripheral nerve for the control of neuroprostheses.
Int Rev Neurobiol. 2013;109:63-83. doi: 10.1016/B978-0-12-420045-6.00002-X.
7
Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review.
J Neuroeng Rehabil. 2020 Mar 10;17(1):43. doi: 10.1186/s12984-020-00667-5.
8
Brain-computer interfaces: an overview of the hardware to record neural signals from the cortex.
Prog Brain Res. 2009;175:297-315. doi: 10.1016/S0079-6123(09)17521-0.
10
Neurostimulation Devices for the Treatment of Neurologic Disorders.
Mayo Clin Proc. 2017 Sep;92(9):1427-1444. doi: 10.1016/j.mayocp.2017.05.005.

引用本文的文献

1
Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration.
Biomaterials. 2025 Nov;322:123385. doi: 10.1016/j.biomaterials.2025.123385. Epub 2025 May 2.
2
The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain.
Curr Pain Headache Rep. 2024 Aug;28(8):769-784. doi: 10.1007/s11916-024-01264-0. Epub 2024 Jun 1.
3
Biomimetic Exogenous "Tissue Batteries" as Artificial Power Sources for Implantable Bioelectronic Devices Manufacturing.
Adv Sci (Weinh). 2024 Mar;11(11):e2307369. doi: 10.1002/advs.202307369. Epub 2024 Jan 9.
4
Highly conformable chip-in-foil implants for neural applications.
Microsyst Nanoeng. 2023 May 9;9:54. doi: 10.1038/s41378-023-00527-x. eCollection 2023.
5
Accelerating cutaneous healing in a rodent model of type II diabetes utilizing non-invasive focused ultrasound targeted at the spleen.
Front Neurosci. 2022 Nov 17;16:1039960. doi: 10.3389/fnins.2022.1039960. eCollection 2022.
6
A bioresorbable peripheral nerve stimulator for electronic pain block.
Sci Adv. 2022 Oct 7;8(40):eabp9169. doi: 10.1126/sciadv.abp9169. Epub 2022 Oct 5.
7
Optimization of Surface Electromyography-Based Neurofeedback Rehabilitation Intervention System.
J Healthc Eng. 2021 Mar 17;2021:5546716. doi: 10.1155/2021/5546716. eCollection 2021.

本文引用的文献

2
Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
J Neural Eng. 2016 Dec;13(6):061003. doi: 10.1088/1741-2560/13/6/061003. Epub 2016 Oct 20.
3
Task-Specific Somatosensory Feedback via Cortical Stimulation in Humans.
IEEE Trans Haptics. 2016 Oct-Dec;9(4):515-522. doi: 10.1109/TOH.2016.2591952. Epub 2016 Jul 18.
5
Selective stimulation of facial muscles with a penetrating electrode array in the feline model.
Laryngoscope. 2017 Feb;127(2):460-465. doi: 10.1002/lary.26078. Epub 2016 Jun 16.
6
Virtual typing by people with tetraplegia using a self-calibrating intracortical brain-computer interface.
Sci Transl Med. 2015 Nov 11;7(313):313ra179. doi: 10.1126/scitranslmed.aac7328.
7
Progressive Paraplegia from Spinal Cord Stimulator Lead Fibrotic Encapsulation: A Case Report.
Am J Phys Med Rehabil. 2016 Mar;95(3):e30-3. doi: 10.1097/PHM.0000000000000411.
8
Auditory brainstem implant in postlingual postmeningitic patients.
Laryngoscope. 2016 Aug;126(8):1889-92. doi: 10.1002/lary.25731. Epub 2015 Oct 20.
9
Clinical translation of a high-performance neural prosthesis.
Nat Med. 2015 Oct;21(10):1142-5. doi: 10.1038/nm.3953. Epub 2015 Sep 28.
10
Electrical Stimulation of Eye Blink in Individuals with Acute Facial Palsy: Progress toward a Bionic Blink.
Plast Reconstr Surg. 2015 Oct;136(4):515e-523e. doi: 10.1097/PRS.0000000000001639.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验