Plant Biomechanics Group, Botanic Garden, University of Freiburg, Faculty of Biology, D-79104, Freiburg im Breisgau, Germany.
Freiburg Materials Research Center (FMF), University of Freiburg, D-79104, Freiburg im Breisgau, Germany.
Adv Mater. 2018 May;30(19):e1703653. doi: 10.1002/adma.201703653. Epub 2017 Oct 24.
Motile plant structures (e.g., leaves, petals, cone scales, and capsules) are functionally highly robust and resilient concept generators for the development of biomimetic actuators for architecture. Here, a concise review of the state-of-the-art of plant movement principles and derived biomimetic devices is provided. Achieving complex and higher-dimensional shape changes and passive-hydraulic actuation at a considerable time scale, as well as mechanical robustness of the motile technical structures, is challenging. For example, almost all currently available bioinspired hydraulic actuators show similar limitations due to the poroelastic time scale. Therefore, a major challenge is increasing the system size to the meter range, with actuation times of minutes or below. This means that response speed and flow rate need significant improvement for the systems, and the long-term performance degradation issue of hygroscopic materials needs to be addressed. A theoretical concept for "escaping" the poroelastic regime is proposed, and the possibilities for enhancing the mechanical properties of passive-hydraulic bilayer actuators are discussed. Furthermore, the promising aspects for further studies to implement tropistic movement behavior are presented, i.e., movement that depends on the direction of the triggering stimulus, which can finally lead to "smart building skins" that autonomously and self-sufficiently react to changing environmental stimuli in a direction-dependent manner.
运动的植物结构(例如,叶子、花瓣、球果鳞片和蒴果)是功能高度强大且有弹性的概念生成器,可用于开发用于建筑的仿生致动器。在这里,提供了对植物运动原理和衍生仿生设备的最新技术的简要回顾。实现复杂和更高维的形状变化以及在相当大的时间尺度上的被动液压致动,以及运动技术结构的机械鲁棒性,是具有挑战性的。例如,由于多孔弹性时间尺度,几乎所有当前可用的仿生液压致动器都显示出类似的限制。因此,主要的挑战是将系统尺寸增加到米级,致动时间为几分钟或更短。这意味着需要显著提高系统的响应速度和流量,并且需要解决吸湿材料的长期性能下降问题。提出了一种“摆脱”多孔弹性状态的理论概念,并讨论了增强被动液压双层致动器机械性能的可能性。此外,还提出了实施向性运动行为的进一步研究的有希望的方面,即依赖于触发刺激方向的运动,最终可以导致“智能建筑外皮”,这些外皮可以自主且自给自足地以依赖于方向的方式对不断变化的环境刺激做出反应。