Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
Key Laboratory for Analytical Science of Food Safety and Biology (MOE & Fujian Province), State Key Laboratory of Photocatalysis on Energy and Environment, Department of Chemistry, Fuzhou University, Fuzhou 350116, PR China.
Biosens Bioelectron. 2018 Mar 15;101:159-166. doi: 10.1016/j.bios.2017.10.031. Epub 2017 Oct 16.
Methods based on photoelectrochemistry have been developed for immunoassay, but most involve in a low sensitivity and a relatively narrow detectable range. Herein a new bio-bar-code-based split-type photoelectrochemical (PEC) immunoassay was designed for sensitive detection of prostate-specific antigen (PSA), coupling rolling circle amplification (RCA) with enzymatic biocatalytic precipitation. The bio-bar-code-based immunoreaction was carried out on monoclonal anti-PSA antibody (mAb)-coated microplate using primer DNA and polyclonal anti-PSA antibody-conjugated gold nanoparticle (pDNA-AuNP-pAb) with a sandwich-type assay format. Accompanying the immunocomplex, the labeled primer DNA on gold nanoparticle readily triggered RCA reaction in the presence of padlock probe/dNTPs/ligase/polymerase. The RCA product with a long single-stranded DNA could cause the formation of numerous hemin/G-quadruplex-based DNAzyme concatamers. With the assistance of nicking endonuclease, DNAzyme concatamers were dissociated from gold nanoparticle, which catalyzed the precipitation of 4-chloro-1-naphthol in the presence of HO onto CdS nanorods-coated electrode (as the photoanode for the generated holes). The formed insoluble precipitate inhibited the electron transfer from the solution to CdS nanorods-modified electrode by using ascorbic acid as the electron donor. Under the optimum conditions, the photocurrent of the modified electrode decreased with the increasing of PSA concentration. A detectable concentration for target PSA with this system could be achieved as low as 1.8pgmL. In addition, our strategy also showed good reproducibility, high specificity and accuracy matched well with commercial PSA ELISA kits for real sample analysis. These remarkable properties revealed that the developed PEC immunoassay has great potential as a useful tool for the detection of PSA in practical application.
基于光电化学的方法已被开发用于免疫分析,但大多数方法涉及灵敏度低和检测范围相对较窄。在此,设计了一种新的基于生物条码的分裂型光电化学(PEC)免疫分析方法,用于灵敏检测前列腺特异性抗原(PSA),将滚环扩增(RCA)与酶生物催化沉淀相结合。基于生物条码的免疫反应在单克隆抗 PSA 抗体(mAb)包被的微孔板上进行,使用引物 DNA 和多克隆抗 PSA 抗体偶联的金纳米粒子(pDNA-AuNP-pAb),采用三明治型测定格式。伴随免疫复合物,标记的金纳米粒子上的引物 DNA在带有发夹探针/dNTPs/连接酶/聚合酶的情况下容易引发 RCA 反应。带有长单链 DNA 的 RCA 产物可以导致许多血红素/G-四链体基 DNA 酶连接物的形成。在核酸内切酶的协助下,DNA 酶连接物从金纳米粒子上解离出来,在 HO 的存在下,在 CdS 纳米棒修饰的电极(作为产生的空穴的光阳极)上催化 4-氯-1-萘酚的沉淀。形成的不溶性沉淀物通过使用抗坏血酸作为电子供体抑制了从溶液到 CdS 纳米棒修饰电极的电子转移。在最佳条件下,修饰电极的光电流随着 PSA 浓度的增加而降低。该系统对靶 PSA 的检测浓度可低至 1.8pgmL。此外,我们的策略还表现出良好的重现性、高特异性和准确性,与商业 PSA ELISA 试剂盒用于实际样品分析的结果相吻合。这些显著的特性表明,所开发的 PEC 免疫分析具有很大的潜力,可作为实际应用中检测 PSA 的有用工具。