Suppr超能文献

基于深度图像和 EEG 的老年痴呆症患者互动式护理系统。

An Interactive Care System Based on a Depth Image and EEG for Aged Patients with Dementia.

机构信息

School of Computer Science and Software Engineering, Tianjin Polytechnic University, Tianjin 300387, China.

出版信息

J Healthc Eng. 2017;2017:4128183. doi: 10.1155/2017/4128183. Epub 2017 Jul 18.

Abstract

Due to the limitations of the body movement and functional decline of the aged with dementia, they can hardly make an efficient communication with nurses by language and gesture language like a normal person. In order to improve the efficiency in the healthcare communication, an intelligent interactive care system is proposed in this paper based on a multimodal deep neural network (DNN). The input vector of the DNN includes motion and mental features and was extracted from a depth image and electroencephalogram that were acquired by Kinect and OpenBCI, respectively. Experimental results show that the proposed algorithm simplified the process of the recognition and achieved 96.5% and 96.4%, respectively, for the shuffled dataset and 90.9% and 92.6%, respectively, for the continuous dataset in terms of accuracy and recall rate.

摘要

由于患有痴呆症的老年人身体活动能力和功能的限制,他们很难像正常人一样通过语言和手势语言与护士进行有效的沟通。为了提高医疗保健沟通的效率,本文提出了一种基于多模态深度神经网络(DNN)的智能互动护理系统。DNN 的输入向量包括运动和心理特征,分别从 Kinect 和 OpenBCI 获取的深度图像和脑电图中提取。实验结果表明,所提出的算法简化了识别过程,在随机数据集方面的准确率和召回率分别达到了 96.5%和 96.4%,在连续数据集方面分别达到了 90.9%和 92.6%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/efb5/5540472/465f5d22c532/JHE2017-4128183.001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验