Suppr超能文献

用于计算表型分析的联邦张量分解

Federated Tensor Factorization for Computational Phenotyping.

作者信息

Kim Yejin, Sun Jimeng, Yu Hwanjo, Jiang Xiaoqian

机构信息

Pohang University of Science and Technology, Pohang, Korea.

University of California, San Diego, La Jolla, CA.

出版信息

KDD. 2017 Aug;2017:887-895. doi: 10.1145/3097983.3098118.

Abstract

Tensor factorization models offer an effective approach to convert massive electronic health records into meaningful clinical concepts (phenotypes) for data analysis. These models need a large amount of diverse samples to avoid population bias. An open challenge is how to derive phenotypes jointly across multiple hospitals, in which direct patient-level data sharing is not possible (e.g., due to institutional policies). In this paper, we developed a novel solution to enable federated tensor factorization for computational phenotyping without sharing patient-level data. We developed secure data harmonization and federated computation procedures based on alternating direction method of multipliers (ADMM). Using this method, the multiple hospitals iteratively update tensors and transfer secure summarized information to a central server, and the server aggregates the information to generate phenotypes. We demonstrated with real medical datasets that our method resembles the centralized training model (based on combined datasets) in terms of accuracy and phenotypes discovery while respecting privacy.

摘要

张量分解模型提供了一种有效的方法,可将海量电子健康记录转换为有意义的临床概念(表型),用于数据分析。这些模型需要大量多样的样本,以避免群体偏差。一个公开的挑战是如何在多个医院之间联合推导表型,而在这些医院中,直接的患者级数据共享是不可能的(例如,由于机构政策)。在本文中,我们开发了一种新颖的解决方案,以实现用于计算表型分析的联邦张量分解,而无需共享患者级数据。我们基于交替方向乘子法(ADMM)开发了安全的数据协调和联邦计算程序。使用这种方法,多家医院迭代更新张量,并将安全的汇总信息传输到中央服务器,服务器汇总这些信息以生成表型。我们通过真实医疗数据集证明,我们的方法在尊重隐私的同时,在准确性和表型发现方面类似于集中式训练模型(基于组合数据集)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/10c8/5652331/0cc709d811e7/nihms880922f1.jpg

相似文献

2
Communication Efficient Tensor Factorization for Decentralized Healthcare Networks.用于分散式医疗网络的通信高效张量分解
Proc IEEE Int Conf Data Min. 2021 Dec;2021:1216-1221. doi: 10.1109/icdm51629.2021.00147. Epub 2022 Jan 24.

引用本文的文献

6
Transformers and large language models in healthcare: A review.医疗保健中的变压器和大型语言模型:综述。
Artif Intell Med. 2024 Aug;154:102900. doi: 10.1016/j.artmed.2024.102900. Epub 2024 Jun 5.

本文引用的文献

2
VERTIcal Grid lOgistic regression (VERTIGO).垂直网格逻辑回归(VERTIGO)。
J Am Med Inform Assoc. 2016 May;23(3):570-9. doi: 10.1093/jamia/ocv146. Epub 2015 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验